• Title/Summary/Keyword: Petroleum-degrading Bacteria

Search Result 27, Processing Time 0.027 seconds

Isoaltion and characterization of petroleum degrading bacteria (원유분해세균의 분리 및 특성)

  • Song, Young-Hwan
    • Journal of fish pathology
    • /
    • v.5 no.2
    • /
    • pp.153-158
    • /
    • 1992
  • From several sites of petroleum storage basement in South Coasts in Korea, various petroleum degrading bacteria have been isolated and characterized as Pseudomonas fluorescens, Acinetobacter baumanii, Pseudomonas maltophila and Pseudomonas aeruginosa, respectively. They show the ability of petroleum degradation on minimal media which contains petroleum as sole carbon source and loose the ability at high concentration of NaCl as increasing the concentration of NaCl from 0.5% to 6%. It has been confirmed that such bacteria have utilized the simple saturate hydrocarbon; n-decane, n-hexane, n-octane and n-decane because petroleum consists of various kinds of organic compounds. It has been also identified that petroleum degrading bacteria habor the plasmid and show the antibiotic resistance against ampicillin, tetracycline and chloramphenicol. These results strongly suggest that the petroleum degrading gene and antibiotic resistance gene might be located on the high molecular weight plasmid.

  • PDF

Biodegradation of Hydrocarbon Contamination by Immobilized Bacterial Cells

  • Rahman Raja Noor Zaliha Abd.;Ghazali Farinazleen Mohamad;Salleh Abu Bakar;Basri Mahiran
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.354-359
    • /
    • 2006
  • This study examined the capacity of immobilized bacteria to degrade petroleum hydrocarbons. A mixture of hydrocarbon-degrading bacterial strains was immobilized in alginate and incubated in crude oil-contaminated artificial seawater (ASW). Analysis of hydrocarbon residues following a 30-day incubation period demonstrated that the biodegradation capacity of the microorganisms was not compromised by the immobilization. Removal of n-alkanes was similar in immobilized cells and control cells. To test reusability, the immobilized bacteria were incubated for sequential increments of 30 days. No decline in biodegradation capacity of the immobilized consortium of bacterial cells was noted over its repeated use. We conclude that immobilized hydrocarbon-degrading bacteria represent a promising application in the bioremediation of hydrocarbon-contaminated areas.

Field Applicability Study of Landfarming for Petroleum Hydrocarbons Contaminated Soils (토양 경작법을 이용한 유류오염토양 정화사업 타당성 연구)

  • Jho, Eun Hea;Ryu, Hyerim;Shin, Doyun;Kim, Young-Jin;Choi, Yong Ju;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • The landfarming treatment for the remediation of the petroleum contaminated soil at the returned U.S. Military bases was investigated in this study. Specifically, the bioaugmentation performance using various commercially available petroleum-degrading bacteria was evaluated and the directions for enhancing the performance of the landfarming treatment were suggested. The environmental factors of the soils at the returned U.S. Military bases chosen for remediation indicate that the landfarming treatment can be used as the remediation technique; however, the addition of nitrogen or phosphorus is required. The lab-scale landfarming treatment tests using the model soil and the site soil showed that the degradation efficiency was greater with the model soil than the site soil and that the treatment performance was not affected by the number of bacteria present in the soil in the range of $10^6-10^{12}$ CFU/g. These results suggest that the successful landfarming treatment depends on the petroleum degradability of bacteria used and the environmental conditions during the treatment rather than the number of petroleum-degrading bacteria used.

Effect of temperature and salinity on the bacterial degradability of petroleum hydrocarbon (세균의 유류 분해능에 미치는 온도와 염분의 영향)

  • 오영숙;김상종
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.339-347
    • /
    • 1988
  • The rate of bacterial degradation of hydrocarbon was estimated for the measurment of the self-purification capacity of the aquatic ecosystem. Strain ND601P-2, selected as petroleum degrading bacteria from Nakdong River Estuary with high degradability of petroleum, transformed 42% of hexadecane to $CO_{2}$ or cell mateials under the conditions of $25^{\circ}C$, 0.03M NaCl, 167mg-$NH_{4}^+/1, 950 mg-PO_{4}^{3-}$/1, 50 mg-hexadecane/1. The mineralization rate was found to be significantly affected by the temperature and the $Q_{10}$ value was 2.2. Teh optimal salinity of the strain ND601P-2 was 2o/oo. The increased salinity caused the elevation of % respiration value and the prolonged lag phase.

  • PDF

경기만에서 석유분해세균의 분포 및 석유분해능

  • 이정래;황열순;이기승;이건형;김상종
    • Korean Journal of Microbiology
    • /
    • v.30 no.3
    • /
    • pp.187-192
    • /
    • 1992
  • The spatial and temporal distribution of petroleum-degrading bacteria(PDB) was studied at six sampling sites in Kyeonggi Bay of the Yellow Sea fiom March 1990 to October 1991. In addition, petroleum-degrading potcntial of natural ~iiai-ineb acterial population was studied at different culturc contlitions. During the period o f stutly. thc heterotrophic bacterial number and PDB number were n1e;rsured in the range of 7 000-108.400 CFU/nil. 0-2.800 MPN1100 mi. respectively. The spatial tlistribution of PDB wa\ highly affected by presence of petroleum hydrocarbon. In laboratory cxperirncnt. petrolcu~n biodegradation wac enhanced hy addition of yeast cxtracl. cell free cxtr:~ct. anti rnixctl culture of PI)B.

  • PDF

Regional Distribution of Hydrocarbon Degrading Bacteria in the Sediment of South Sea, Korea (남해해역 퇴적토의 탄화수소 분해세균 분포)

  • 김상진;최성찬
    • Korean Journal of Microbiology
    • /
    • v.30 no.5
    • /
    • pp.366-370
    • /
    • 1992
  • Sediment samples were collected from the stations 0101-0921 located between N $32^{\circ}$30'~$34^{\circ}$30' and E $123^{\circ}$30'-$128^{\circ}$30' during July 31-August lO. 1988. The distributions of total heterotrophic bacteria, freshwater bacteria and hydrocarbon degrading bacteria were studied. Each bacterial distribution was in the range of $3{\times}10^{5}~9.2{\times}10^{6}CFU/cm^{3}$sediment, $3{\times}10^{3}~2.1{\times}10^{6}CFU/cm^{3}$ sediment and $2{\times}10^{4}~6.2{\times}10^{6}CFU/cm^{3}$ sediment. respectively. The percent of hydrocarbon degrading bacteria against total heterotrophic bacteria was 0.7-73,2 % which was much higher than other marine sediments reported. These values were statistically analyzed with the percent of freshwater bacteria against total heterotrophic bacteria. These two parameters were well correlated with the correlation coefficient r= 0.60058 (n=34) and P=0.OOO2. This means that the distributions of hydrocarbon degrading bacteria and freshwater bacteria in the research area were affected together by the fresh water discharge into the sea environment. Therefore it can be concluded that the distribution of hydrocarbon degrading bacteria in the sediment of South Sea was affected by petroleum hydrocarbon input from terrestrial region through rivers.

  • PDF

The Removal Efficacy of Heavy Metals and Total Petroleum Hydrocarbons from Contaminated Soils by Integrated Bio-phytoremediation

  • Lai, Wen-Liang;Lee, Fang-Yin;Chen, Colin S.;Hseu, Zeng-Yei;Kuo, Yau-Lun
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.35-44
    • /
    • 2014
  • In this study, the bio-phytoremediation and phytoremediation technologies were applied to the soils contaminated with total petroleum hydrocarbons (TPH) and heavy metals to evaluate the remediation efficacy from May 2012 to December 2013. Poplar (Populus bonatii Levl.) and Sun Hemp (Crotalaria juncea L.) were selected and planted in phytoremediation practice. These plants were also utilized in the bio-phytoremediation practice, with the addition of earthworm (Eisenia fetida) and petroleum-degrading bacteria (Pseudomonos sp. NKNU01). Furthermore, physiological characteristics, such as photosynthesis rate and maximal photochemical yield, of all testing plants were also measured in order to assess their health conditions and tolerance levels in adverse environment. After 20 months of remedial practice, the results showed that bio-phytoremediation practice had a higher rate of TPH removal efficacy at 30-60 cm depth soil than that of phytoremediation. However, inconsistent results were discovered while analyzing the soil at 100 cm depth. The study also showed that the removal efficiency of heavy metals was lower than that of TPH after remediation treatment. The results from test field tissue sample analysis revealed that more Zinc than Chromium was absorbed and accumulated by the tested plants. Plant height measurements of Poplar and Sun Hemp showed that there were insignificant differences of growth between the plants in remediation plots and those in the control plot. Physiological data of Poplar also suggested it has higher tolerance level toward the contaminated soils. These results indicated that the two testing plants were healthy and suitable for this remediation study.

Distribution and Activity of Heterotrophic Bacterial Communities in Kyeonggi Bay, Korea (경기만의 종속영양 세균군집의 분포 및 활성)

  • 강찬수;이기승;김명운;권개경;김용학;박성주;이건형;김상종
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.324-330
    • /
    • 1990
  • The distribution of physicochemical environmental factors and microbiological factors was studied at 6 sampling sites in Kyeongge Bay of Yellow Sea from October 1989 to October 1990. The total bacterial number, saprophytic bacterial number, petroleum-degrading bacterial number, bacterial biomass, and bacterial secondary production were measured in the range of 0.09~1.24*10$^{7}$ cells/ml, 7~60000 CFUs/ml, 0~240 cells/ml, 14.16~301 .$\mu$g-C/l, and 0.13~11.82 mg-C/m$^{3}$/hr, respectively. The turnover times of $^{3}$H-glucose and $^{3}$H-acetate were in range of 6.5~6984 and 41~24897 hours, respectively. The spatial distribution of heterotrophic bacterial communities were hightly affected by influx of organic pollutants from the coastal area and the seawater exchange with offshore.

  • PDF

Distribution and Biodegradation of Crude oil-Degrading Bacteria in P'ohang Coastal Area (포항근해 원유분해세균의 분포 및 원유분해능)

  • 이창호;권기석;서현호;김희식;오희목;윤병대
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.35-42
    • /
    • 1996
  • Seawater samples were collected from P'ohang coastal area during April 1995 - January 1996. The distribution of total heterotrophic bacteria and crude oil-degrading bacteria (CDB) were studied. In addition, biodegradation of crude oil was investigated through mono and mixed culture. The heterotrophic bacterial distribution was in the range of 4.1 $\times$ $10^4$- 1.2 $\times$ $10^5$ CFU/$m\ell$, respectively. The percent of crude oil-degrading bacteria against total heterotrophic bacteria was 0.05-0.54% which was lower than other marine samples reported. Therefore it could be suggested that the distribution of crude oil-degrading bacteria in the seawater of P'ohang coastal area was highly affected by presence of petroleum hydrocarbon. Taxonomical characteristics of 26 isolates were investigated. The results of identification were showed 7 genera which were Acinetobacter spp., Bacillus spp., Citrobacter spp., Micrococcus spp., Moraxella spp., Rhodococcus spp., and Serratia spp. Appearance of Enterobacteriaceae indicated that the seawater was polluted with wastewater. Also genus of Bacillus had predominant in CDB on P'ohang coastal area. In flask culture, biodegradation of crude oil was enhanced by addition of mixed culture of CDB.

  • PDF

Role of Unstable Phenanthrene-Degrading Pseudomonas species in Natural Attenuation of Phenanthrene-Contaminated Site

  • Prakash, Om;Lal, Rup
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.79-87
    • /
    • 2013
  • An unstable yet efficient phenanthrene-degrading bacterium strain Ph-3 was isolated from a petroleum-contaminated site at the Mathura Oil Refinery, India. The strain was identified as Pseudomonas sp. using a polyphasic approach. An analysis of the intermediates and assays of the degradative enzymes from a crude extract of phenanthrene-grown cells showed a novel and previously unreported pattern of 1, 2-dihydroxy naphthalene and salicylic acid production. While strain Ph-3 lost its phenanthrene- degrading potential during successive transfers on a rich medium, it maintained this trait in oligotrophic soil conditions under the stress of the pollutant and degraded phenanthrene efficiently in soil microcosms. Although the maintenance and in vitro study of unstable phenotypes are difficult and such strains are often missed during isolation, purification, and screening, these bacteria constitute a substantial fraction of the microbial community at contaminated sites and play an important role in pollutant degradation during biostimulation or monitored natural attenuation.