• Title/Summary/Keyword: Personalized system

Search Result 904, Processing Time 0.024 seconds

The Study on Goal Driven Personalized e-Learning System Design Based on Modified SCORM Standard (수정된 SCORM 표준을 적용한 목표지향 개인화 이러닝 시스템 설계 연구)

  • Lee, Mi-Joung;Park, Jong-Sun;Kim, Ki-Seok
    • Journal of Information Technology Services
    • /
    • v.7 no.4
    • /
    • pp.231-246
    • /
    • 2008
  • This paper suggests an e-learning system model, a goal-driven personalized e-learning system, which increase the effectiveness of learning. An e-learning system following this model makes the learner choose the learning goal. The learner's choice would lead learning. Therefore, the system enables a personalized adaptive learning, which will raise the effectiveness of learning. Moreover, this paper proposes a SCORM standard, which modifies SCORM 2004 that has been insufficient to implement the "goal driven personalized e-learning system." We add a data model representing the goal that motivates learning, and propose a standard for statistics on learning objects usage. We propose each standard for contents model and sequencing information model which are parts of "goal driven personalized e-learning system." We also propose that manifest file should be added for the standard for contents model, and the file which represents the information of hierarchical structure and general learning paths should be added for the standard for sequencing information model. As a result, the system could sequence and search learning objects. We proposed an e-learning system and modified SCORM standards by considering the many factors of adaptive learning. We expect that the system enables us to optimally design personalized e-learning system.

The Effect of the Personalized Recommendation System of Online Shopping Platform on Consumers' Purchase Intention (온라인 쇼핑 플랫폼의 개인화 추천 시스템이 소비자의 구매의도에 미치는 영향)

  • Yingying Lu;Jongki Kim
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.67-87
    • /
    • 2023
  • Many online shopping sites now offer personalized recommendation systems to improve consumers' shopping experiences by lowering costs (time, cost, etc.), catering to consumers' tastes, and stimulating consumers' potential shopping needs. So far, domestic and foreign research on the personalized recommendation system has mainly focused on the field of computer science, which is advantageous for obtaining accurate personalized recommendation results for users but difficult to continuously track the users' psychological states or behavioral intentions. This study attempted to investigate the effect of the characteristics of the personalized recommendation system in the online shopping environment on consumer perception and purchase intention for consumers using the Stimulus-Organism-Response (S-O-R) model. The analysis results adopted all hypotheses on the effect of the quality of the personalized recommendation system and information quality on trust and perceived value. Through the empirical results of this study, the factors influencing consumers' use of personalized recommendation system can be identified. In order to increase more purchase, online shopping companies need to understand consumers' tastes and improve the quality of the personalized system by improving the recommendation algorithm thus to provide more information about products.

Personalized Healthcare System for Chronic Disease Care in Cloud Environment

  • Jeong, Sangjin;Kim, Yong-Woon;Youn, Chan-Hyun
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.730-740
    • /
    • 2014
  • The rapid increase in the number of patients with chronic diseases is an important public healthcare issue in many countries, which accelerates many studies on a healthcare system that can, whenever and wherever, extract and process patient data. A patient with a chronic disease conducts self-management in an out-of-hospital environment, particularly in an at-home environment, so it is important to provide integrated and personalized healthcare services for effective care. To help provide effective care for chronic disease patients, we propose a service flow and a new cloud-based personalized healthcare system architecture supporting both at-home and at-hospital environments. The system considers the different characteristics of at-hospital and at-home environments, and it provides various chronic disease care services. A prototype implementation and a predicted cost model are provided to show the effectiveness of the system. The proposed personalized healthcare system can support cost-effective disease care in an at-hospital environment and personalized self-management of chronic disease in an at-home environment.

The Development of the Bi-directionally Personalized Broadcasting and the Targeting Advertisement System Based on the User Profile Techniques (사용자 프로파일 기반의 맞춤형 광고 서비스 및 양방향 개인 맞춤형 방송 시스템 구축)

  • Shin, Sa-Im;Lee, Jong-Soel;Jang, Se-Jin;Lee, Soek-Pil
    • Journal of Broadcast Engineering
    • /
    • v.15 no.5
    • /
    • pp.632-641
    • /
    • 2010
  • This paper shows the research about the personalized broadcasting system. The personalized broadcasting is the service that users only show the programs which they want to watch when they want to watch these. The purpose of the bi-directional broadcasting service is supporting more satisfied and more personalized services by permitting the bi-directional data transformation. This research also develops the user profiling system for the bi-directional and personalized broadcasting service. This system applied the TV-Anytime metadata specifications which is the standard for the personalized broadcasting services, the system supports the various functions for the bi-directionl and personalized broadcasting such as the user profiling, contents metadata and targeting advertisement services. The bi-directional and personalized broadcasting system increases the users' satisfaction with the recommendation and management of the personally favorite broadcasting contents and advertisements, the trial run results show that the services raise the users' satisfaction with the intelligent and discriminating broadcasting services.

The comparison on the learning effect of low-achievers in mathematics using Blended e-learning and Personalized system of instruction (수학 성취도가 낮은 학생의 보충 지도 과정에서 블렌디드 e-러닝과 개별화 교수체제의 효과 비교 분석)

  • Song, Dagyeom;Lee, Bongju
    • The Mathematical Education
    • /
    • v.56 no.2
    • /
    • pp.161-175
    • /
    • 2017
  • The purpose of this study is to compare and analyze the impact on low-achievers in mathematics who studied mathematics using Blended e-learning and Personalized system of instruction after school. Blended e-learning is defined as the management of e-learning using the e-study run by the education office in local. Personalized system of instruction was proceeded as follows; (1) all students are given a syllabicated learning task and a study guide, (2) students study the material autonomously according to their own pace for a certain period of time, (3) the teacher strengthens the students' motivation through grading and feedback after students study a subject and solve the evaluation problem. The learning materials for Personalized system of instruction are re-edited the offline education contents provided by the blended e-learning to the level of students. The 118 $7^{th}$ grade students from the D middle school participated in this study. The results were verified by achievement tests before and after the study, as well as survey regarding their attitude toward mathematics. The results are as follows. First, Blended e-learning has more positive impacts than Personalized system of instruction in mathematics achievement. Second, there was no difference in mathematics achievement according to their self-directed learning between Blended e-learning and Personalized system of instruction. Third, both types utilizing Blended e-learning and Personalized system of instruction have positive effect on attitude toward mathematics, and there is not their difference between two methods of teaching and learning mathematics.

A Personalized Retrieval System Based on Classification and User Query (분류와 사용자 질의어 정보에 기반한 개인화 검색 시스템)

  • Kim, Kwang-Young;Shim, Kang-Seop;Kwak, Seung-Jin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.43 no.3
    • /
    • pp.163-180
    • /
    • 2009
  • In this paper, we describe a developmental system for establishing personal information tendency based on user queries. For each query, the system classified it based on the category information using a kNN classifier. As category information, we used DDC field which is already assigned to each record in the database. The system accumulates category information for all user queries and the user's personalized feature for the target database. We then developed a personalized retrieval system reflecting the personalized feature to produce search result. Our system re-ranks the result documents by adding more weights to the documents for which categories match with the user's personalized feature. By using user's tendency information, the ambiguity problem of the word could be solved. In this paper, we conducted experiments for personalized search and word sense disambiguation (WSD) on a collection of Korean journal articles of science and technology arena. Our experimental result and user's evaluation show that the performance of the personalized search system and WSD is proved to be useful for actual field services.

Development of a Personalized Music Recommendation System Using MBTI Personality Types and KNN Algorithm

  • Chun-Ok Jang
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2024
  • This study aims to develop a personalized music digital therapeutic based on MBTI personality types and apply it to depression treatment. In the data collection stage, participants' MBTI personality types and music preferences were surveyed to build a database, which was then preprocessed as input data for the KNN model. The KNN model calculates the distance between personality types using Euclidean distance and recommends music suitable for the user's MBTI type based on the nearest K neighbors' data. The developed system was tested with new participants, and the system and algorithm were improved based on user feedback. In the final validation stage, the system's effectiveness in alleviating depression was evaluated. The results showed that the MBTI personality type-based music recommendation system provides a personalized music therapy experience, positively impacting emotional stability and stress reduction. This study suggests the potential of nonpharmacological treatments and demonstrates that a personalized treatment experience can offer more effective and safer methods for treating depression.

Bidirectional Personalized Mobile Broadcasting System (양방향 개인맞춤형 모바일 방송 시스템)

  • Lee, Hee-Kyung;Yang, Seung-Jun;Lee, Han-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2B
    • /
    • pp.361-371
    • /
    • 2010
  • To vitalize the terrestrial DMB market, we introduce a personalized DMB(PDMB) service model based on metadata, especially DMB ECG XML standardized by TTA, under the convergence of broadcasting and telecommunications. Also we introduce the personalized DMB service system developed to validate the conformance of DMB ECG XML standard and the usefulness of DMB ECG service. The personalized DMB service system is described in details from the authoring stage to the consumption stage of the contents. The results of experimental tests for the personalized DMB service system are also introduced in this paper. We finally address the possibility of making successful personalized DMB services in mobile multimedia broadcasting market.

Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts (도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템)

  • Ahn, Hee-Jeong;Kim, Kee-Won;Kim, Seung-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

A Structure of Personalized e-Learning System Using On/Off-line Mixed Estimations Based on Multiple-Choice Items

  • Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.5 no.1
    • /
    • pp.51-55
    • /
    • 2009
  • In this paper, we present a structure of personalized e-Learning system to study for a test formalized by uniform multiple-choice using on/off line mixed estimations as is the case of Driver :s License Test in Korea. Using the system a candidate can study toward the license through the Internet (and/or mobile instruments) within the personalized concept based on IRT(item response theory). The system accurately estimates user's ability parameter and dynamically offers optimal evaluation problems and learning contents according to the estimated ability so that the user can take possession of the license in shorter time. In order to establish the personalized e-Learning concepts, we build up 3 databases and 2 agents in this system. Content DB maintains learning contents for studying toward the license as the shape of objects separated by concept-unit. Item-bank DB manages items with their parameters such as difficulties, discriminations, and guessing factors, which are firmly related to the learning contents in Content DB through the concept of object parameters. User profile DB maintains users' status information, item responses, and ability parameters. With these DB formations, Interface agent processes user ID, password, status information, and various queries generated by learners. In addition, it hooks up user's item response with Selection & Feedback agent. On the other hand, Selection & Feedback agent offers problems and content objects according to the corresponding user's ability parameter, and re-estimates the ability parameter to activate dynamic personalized learning situation and so forth.