• Title/Summary/Keyword: Personalized in-store

Search Result 38, Processing Time 0.025 seconds

An Implementation of Web-Enabled OLAP Server in Korean HealthCare BigData Platform (한국 보건의료 빅데이터 플랫폼에서 웹 기반 OLAP 서버 구현)

  • Ly, Pichponreay;Kim, jin-hyuk;Jung, seung-hyun;Lee, kyung-hee Lee;Cho, wan-sup
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.33-34
    • /
    • 2017
  • In 2015, Ministry of Health and Welfare of Korea announced a research and development plan of using Korean healthcare data to support decision making, reduce cost and enhance a better treatment. This project relies on the adoption of BigData technology such as Apache Hadoop, Apache Spark to store and process HealthCare Data from various institution. Here we present an approach a design and implementation of OLAP server in Korean HealthCare BigData platform. This approach is used to establish a basis for promoting personalized healthcare research for decision making, forecasting disease and developing customized diagnosis and treatment.

  • PDF

Design and Implementation of Web Server for Analyzing Clickstream (클릭스트림 분석을 위한 웹 서버 시스템의 설계 및 구현)

  • Kang, Mi-Jung;Jeong, Ok-Ran;Cho, Dong-Sub
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.945-954
    • /
    • 2002
  • Clickstream is the information which demonstrate users' path through web sites. Analysis of clickstream shows how web sites are navigated and used by users. Clickstream of online web sites contains effective information of web marketing and to offers usefully personalized services to users, and helps us understand how users find web sites, what products they see, and what products they purchase. In this paper, we present an extended web log system that add to module of collection of clickstream to understand users' behavior patterns In web sites. This system offers the users clickstream information to database which can then analyze it with ease. Using ADO technology in store of database constructs extended web log server system. The process of making clickstreaming into database can facilitate analysis of various user patterns and generates aggregate profiles to offer personalized web service. In particular, our results indicate that by using the users' clickstream. We can achieve effective personalization of web sites.

Personalized Bookmark Recommendation System Using Tag Network (태그 네트워크를 이용한 개인화 북마크 추천시스템)

  • Eom, Tae-Young;Kim, Woo-Ju;Park, Sang-Un
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.181-195
    • /
    • 2010
  • The participation and share between personal users are the driving force of Web 2.0, and easily found in blog, social network, collective intelligence, social bookmarking and tagging. Among those applications, the social bookmarking lets Internet users to store bookmarks online and share them, and provides various services based on shared bookmarks which people think important.Delicious.com is the representative site of social bookmarking services, and provides a bookmark search service by using tags which users attach to the bookmarks. Our paper suggests a method re-ranking the ranks from Delicious.com based on user tags in order to provide personalized bookmark recommendations. Moreover, a method to consider bookmarks which have tags not directly related to the user query keywords is suggested by using tag network based on Jaccard similarity coefficient. The performance of suggested system is verified with experiments that compare the ranks by Delicious.com with new ranks of our system.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

A Personalized Recommendation Methodology based on Collaborative Filtering (협업 필터링 기법을 활용한 개인화된 상품 추천 방법론 개발에 관한 연구)

  • Kim, Jae-Kyeong;Suh, Ji-Hae;Ahn, Do-Hyun;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.139-157
    • /
    • 2002
  • The rapid growth of e-commerce has made both companies and customers face a new situation. Whereas companies have become to be harder to survive due to more and more competitions, the opportunity for customers to choose among more and more products has increased. So, the recommender systems that recommend suitable products to the customer have an important position in E-commerce. This research introduces collaborative filtering based recommender system which helps customers find the products they would like to purchase by producing a list of top-N recommended products. The suggested methodology is based on decision tree, product taxonomy, and association rule mining. Decision tree is used to select target customers, who have high possibility of purchasing recommended products. We applied the recommender system to a Korean department store. The methodology is evaluated with the analysis of a real department store case and is compared with other methodologies.

  • PDF

Traffic Information Service Model Considering Personal Driving Trajectories

  • Han, Homin;Park, Soyoung
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.951-969
    • /
    • 2017
  • In this paper, we newly propose a traffic information service model that collects traffic information sensed by an individual vehicle in real time by using a smart device, and which enables drivers to share traffic information on all roads in real time using an application installed on a smart device. In particular, when the driver requests traffic information for a specific area, the proposed driver-personalized service model provides him/her with traffic information on the driving directions in advance by predicting the driving directions of the vehicle based on the learning of the driving records of each driver. To do this, we propose a traffic information management model to process and manage in real time a large amount of online-generated traffic information and traffic information requests generated by each vehicle. We also propose a road node-based indexing technique to efficiently store and manage location-based traffic information provided by each vehicle. Finally, we propose a driving learning and prediction model based on the hidden Markov model to predict the driving directions of each driver based on the driver's driving records. We analyze the traffic information processing performance of the proposed model and the accuracy of the driving prediction model using traffic information collected from actual driving vehicles for the entire area of Seoul, as well as driving records and experimental data.

A Study on Selection Attributes of Luxury Goods in Online Stores of MZ Generation: Focusing on the Moderating Effects of Consumer Value

  • Seong-Soo CHA;Kyung-Seop KIM
    • Journal of Distribution Science
    • /
    • v.21 no.11
    • /
    • pp.103-111
    • /
    • 2023
  • Purpose: This research aims to study the selection attributes influencing the purchasing decisions of the MZ generation in online luxury stores and explores the moderating effects of consumer value. The research aims to validate the impact of reasonable pricing, brand reliability, product variety, comprehensive product information, and user-friendly interfaces on customers' decision to purchase products from online luxury stores. Research design, data and methodology: A survey was conducted with 101 participants, and data analysis included exploratory and confirmatory factor analysis, as well as covariance structure model analysis. Results: The findings reveal that brand trust, product variety, and information sufficiency significantly influence brand affect, which in turn influences purchase intention. Additionally, the study identifies that consumers prioritizing hedonic value are more influenced by brand trust and information, while those prioritizing utilitarian value are more responsive to factors like reasonable price, product variety, and ease of use. Conclusions: The study provides insights into the preferences and behaviors of the MZ generation, highlighting their digital proficiency, mobile-centric lifestyle, desire for product variety, price-consciousness, social media influence, and the availability of personalized shopping experiences as factors contributing to their preference for online luxury stores. These findings contribute to understanding consumer behavior and decision-making processes in the context of online luxury shopping.

The Effect of Big Data-based Fashion Shopping Applications on App Users' Continuous Usage Intention

  • Hong, Hyekyung;Shin, Yeonseo;Lee, MiYoung
    • Journal of Fashion Business
    • /
    • v.22 no.6
    • /
    • pp.83-93
    • /
    • 2018
  • The purpose of this research is to investigate the characteristics of big data-based fashion shopping (BDFS) application, perceived usefulness, and expectation confirmation that influence the continuous usage intention of BDFS application users based on the expectation-confirmation model. A survey was conducted with female consumers in their 20s, who are living in Seoul and Incheon area and have used BDFS applications, A total of 182 responses were used for the data analysis. Five hypotheses were proposed, and regression analyses were conducted to test those hypotheses. The results indicated that the users' perceived usefulness increased with the increase of accuracy and personalization characteristics of the app and the expectation confirmation. The result suggested that it is essential to provide accurate information for users to feel useful and to develop the personalized offerings and services which can be the biggest strength of the big-data based mobile fashion store. It was also found that continuous usage intention increases with increased perceived usefulness and expectation confirmation. This result suggests that expectations can play a critical role in perceiving the usefulness of BDFS applications and the user's expectation confirmation also significantly affected the users' continuous usage intention.

Current Status, Challenges, Policies, and Bioethics of Biobanks

  • Kang, Byunghak;Park, Jaesun;Cho, Sangyun;Lee, Meehee;Kim, Namhee;Min, Haesook;Lee, Sooyoun;Park, Ok;Han, Bokghee
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.211-217
    • /
    • 2013
  • Many biobanks were established as biorepositories for biomedical research, and a number of biobanks were founded in the 1990s. The main aim of the biobank is to store and to maintain biomaterials for studying chronic disease, identifying risk factors of specific diseases, and applying personalized drug therapies. This report provides a review of biobanks, including Korean biobanks and an analysis of sample volumes, regulations, policies, and ethical issues of the biobank. Until now, the top 6 countries according to the number of large-scale biobanks are the United Kingdom, United States, Sweden, France, the Netherlands, and Italy, and there is one major National Biobank of Korea (NBK) and 17 regional biobanks in Korea. Many countries have regulations and guidelines for the biobanks, and the importance of good management of biobanks is increasing. Meanwhile, according to a first survey of 456 biobank managers in the United States, biobankers are concerned with the underuse of the samples in their repositories, which need to be advertised for researchers. Korea Biobank Network (KBN) project phase II (2013-2015) was also planned for the promotion to use biospecimens in the KBN. The KBN is continuously introducing for researchers to use biospecimens in the biobank. An accreditation process can also be introduced for biobanks to harmonize collections and encourage use of biospecimens in the biobanks. KBN is preparing an on-line application system for the distribution of biospecimens and a biobank accreditation program and is trying to harmonize the biobanks.

Development of Personalized Heart Disease Health Status Monitoring Web Service (개인별 맞춤형 심장질환 건강상태 모니터링 웹 서비스 개발)

  • Young-bok Cho
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.491-497
    • /
    • 2024
  • Over the past five years, the proportion of patients with arrhythmia heart disease among teenagers and those in their 20s has been increasing. Heart disease has consistently remained the second leading cause of death in Korea and as the number has increased, electrocardiogram testing for arrhythmia has become important. However, specialized electrocardiogram medical devices are economically burdensome and are difficult to store individually in hospitals due to their large size and difficulty in operation. Testing is conducted through visits. Therefore, it is essential to enable individuals to perform ECG self-examinations using an Arduino-based ECG sensor that is affordable and easy to use in daily life, so that arrhythmia can be identified through individual ECG measurement. In this study, data is measured using an electrocardiogram sensor (AD8232), and changes in bio signals are visually provided through real-time monitoring, allowing users to make intuitive decisions and at the same time understand test results. To safeguard sensitive personal information, we have developed a web service that provides individual heart disease and customized health guides that can protect personal information through web vulnerability security using session and user authentication and SSL.