The outpaced growth of online channel sales over the traditional retail sales is a result from superior shopping convenience that online stores offer to their customers. One major source of online shopping convenience is a personalized store that reduces customer's shopping time. Personalization of an online store is accomplished by using various in-store shopping behavior data that the Internet and Web Technology provides. Brick-and-mortar retailers have not been able to make this type of data available for their stores until now. However, RFID technology has now opened a new possibility to personalization of traditional retail stores. In this paper, we propose BRIMPS (BRIck-and-Mortar Personalization System) as a system that brick-and-mortar retailers may use to personalize their business and become more competitive against online retailers.
Journal of the Korean Society for information Management
/
v.23
no.2
/
pp.167-183
/
2006
This paper describes a metadata extraction technique based on natural language processing (NLP) which extracts personalized information from email communications between financial analysts and their clients. Personalized means connecting users with content in a personally meaningful way to create, grow, and retain online relationships. Personalization often results in the creation of user profiles that store individuals' preferences regarding goods or services offered by various e-commerce merchants. We developed an automatic metadata extraction system designed to process textual data such as emails, discussion group postings, or chat group transcriptions. The focus of this paper is the recognition of emotional contents such as mood and urgency, which are embedded in the business communications, as metadata.
In this paper, we propose a personalized user authentication system (PUAS) that can be used in multiple stages in user authentication by customizing the password keyword to be used in user authentication. The proposal concept is that the user oneself defines the password keyword to be used in user authentication so as to cope with a passive retransmission attack which reuses the password obtained when the server system is accessed in user authentication. The authentication phase is also designed so that it can be expanded in multiple stages in a single step. Also, it is designed to store user-defined password related information in an arbitrary encrypted place in the system, thereby designing to disable the illegal access of the network. Therefore, even if an intruder accesses the system using the proposed system, it is possible to generate personal authentication information by generating a password keyword through unique personal information possessed only by an individual and not know the place where the generated authentication information is stored, It has a strong security characteristic.
The demand for personalized products and service of apparel product has increased dramatically. In order to acquire a personalized apparel product, consumers may have to sacrifice more expense or time. The purpose of this study was to investigate various personalization strategies in apparel business and to identify antecedents that influence the process. Clothing involvement and two price related variables (clothing expense and willingness to pay more) were included in the study as antecedents. Four personalization strategies were included in the study: design selection, size customization, in-store service and promotion personalization. For an empirical study, a conceptual model was designed and research questionnaire was developed. A measure of personalization of apparel shopping was developed based on existing scale items of prior research and a pilot study. Data from 766 men and women in their twenties to forties were used for statistical analysis. Structural Equation Modeling was used for the data analysis. Results indicated that the conceptual model was a good fit to data. Structural paths indicated that there was significant influence of clothing involvement on design selection and sales promotion personalization strategies. Involved consumers spent more on chothing products and were likely to pay more on personalized products and services. Monthly clothing expense influenced size customization significantly. It also had negative influence on service related personalization strategies. Consumers were willing to pay more when it comes to product related personalization strategies such as design and size but not necessarily to service related strategies. This study was an attempt to provide an in-depth and synthesized approach on consumer attitudes toward personalization of apparel products.
One to one Marketing (a.k.a. database marketing or relationship marketing) is one of the many fields that will benefit from the electronic revolution and shifts in consumer sales and advertising. As a component of intelligent customer services on Internet storefront, this paper describes technology of providing personalized advertisement using the market basket analysis, a well-Known data mining technique. The underlining theories of recommendation techniques are statistics, data mining, artificial intelligence, and/or rule-based matching. In the rule-based approach for personalized recommendation, marketing rules for personalization are usually collected from marketing experts and are used to inference with customer's data. However, it is difficult to extract marketing rules from marketing experts, and also difficult to validate and to maintain the constructed Knowledge base. In this paper, using marketing basket analysis technique, marketing rules for cross sales are extracted, and are used to provide personalized advertisement selection when a customer visits in an Internet store.
Yoon, Jung Hyun;Moon, Hyun Sil;Kim, Jae Kyeong;Choi, Ju Cheol
Journal of Information Technology Services
/
v.14
no.2
/
pp.143-158
/
2015
Companies and governments in an era of big data have been tried to create new values with their data resources. Among many data resources, many companies especially pay attention to data which is obtained from Social Network Service (SNS) because it reveals precise opinion of customers and can be used to estimate profiles of them from their social relationships. However, it is not only hard to collect, store, and analyze the data, but system applications are also insufficient. Therefore, this study proposes a S-POS (Social POS) system which consists of three parts; Twitter Side, POS Side and TPAS (Twitter&POS Analysis System). In this system, SNS data and POS data which are collected from Twitter Side and POS Side are stored in Mongo D/B. And it provides several services with POS terminal based on analysis and matching results which are generated from TPAS. Through S-POS system, we expect to efficient and effective store and sales managements of system users. Moreover, they can provide some differentiated services such as cross-selling and personalized recommendation services.
Yihua Zhang;Qinglong Li;Ilyoung Choi;Jaekyeong Kim
Information Systems Review
/
v.23
no.1
/
pp.155-172
/
2021
With the recent increase in online product purchases, a recommender system that recommends products considering users' preferences has still been studied. The recommender system provides personalized product recommendation services to users. Collaborative Filtering (CF) using user ratings on products is one of the most widely used recommendation algorithms. During CF, the item-based method identifies the user's product by using ratings left on the product purchased by the user and obtains the similarity between the purchased product and the unpurchased product. CF takes a lot of time to calculate the similarity between products. In particular, it takes more time when using text-based big data such as review data of Amazon store. This paper suggests a hybrid recommendation system using a 2-phase methodology and text data mining to calculate the similarity between products easily and quickly. To this end, we collected about 980,000 online consumer ratings and review data from the online commerce store, Amazon Kinder Store. As a result of several experiments, it was confirmed that the suggested hybrid recommendation system reflecting the user's rating and review data has resulted in similar recommendation time, but higher accuracy compared to the CF-based benchmark recommender systems. Therefore, the suggested system is expected to increase the user's satisfaction and increase its sales.
Kim, Chan-Young;Melski, Adam;Caus, Thorsten;Christmann, Stefan;Thoroe, Lars;Schumann, Matthias
한국경영정보학회:학술대회논문집
/
2008.06a
/
pp.1088-1095
/
2008
The outpaced growth of online channel sales over the traditional retail sales is a result from superior shopping convenience that online stores offer to their customers. One major source of online shopping convenience is a personalized store that reduces customer's shopping time. personalization of an online store is accomplished by using various in-store shopping behavior data that the Internet and Web Technology provides. Brick-and-mortar retailers have not been able to make this type of data available for their stores until now. However, RFID technology has now opened a new possibility to personalization of traditional retail stores. In this paper, we propose BRIMPS (BRIck-and-Mortar Personalization System) as a system that brick-and-mortar retailers may use to personalize their business and become more competitive against online retailers.
Customers' needs change every moment. Profitability of stores can't be increased anymore with an existing standardized chain store management. Accordingly, a personalized store management tool needs through prediction of customers' preference. In this study, we propose a recommending procedure using dynamic customers' preference by analyzing the transaction database. We utilize self-organizing map algorithm and association rule mining which are applied to cluster the chain stores and explore purchase sequence of customers. We demonstrate that the proposed methodology makes an effect on recommendation of products in the market which is characterized by a fast fashion and a short product life cycle.
The purpose of this study was to identify the impact of acculturation level and individualism/collectivism on shopping behaviors such as' informational influences, shopping orientations, and store patronage of Asian ethnic groups residing in the United States. A total of 129 Asian adults residing in North Carolina State of the U.S. completed questionnaires. Results showed statistically significant differences in responses to an informational influence (i.e., media source) and two shopping orientation subscales (i.e., shopping confusion in the Us. and personalized shopping) between low- and high-acculturated groups. A significant difference was found between the individualistic group and the collectivistic group on three shopping orientation subscales. Due to the potential importance of considering both acculturation and individualism/collectivism when looking at shopping behaviors, four groups were created by categorizing respondents on the basis of their acculturation level and individualism/collectivism scores. Comparison on shopping orientations and informational influences by four groups revealed statistically significant differences in response to two shopping orientation subscales and two patronage behavior subscales.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.