Journal of Information Technology Applications and Management
/
v.24
no.1
/
pp.33-43
/
2017
The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.
The exhibition industry, as technology-intensive, eco-friendly industry, contributes to regional and national development and enhancement of its image as well, if it joins cultural and tourist industry. Therefore, We need to revitalize the exhibition industry, as actively holding an exhibition event. However, to attract a number of exhibition audience, the work of enhancing audience satisfaction and awareness of value for participation should be prioritized after improving quality of service within exhibition hall. As one way to enhance the quality of service, it is thought that the way providing personalized service geared toward each audience is needed. that is, if audience avoids the complexity in exhibition space and it affords them service to enable effective time and space management, it will improve the satisfaction. All such personalized service affordable lets the audience's preference on the basis of each audience profile registered in advance online grasp. and Based on this information, it is provided with exhibition-related information suited their purpose that is the booth for the interesting audience, the shortest path to go to the booth and event via audience's smart phone. and it collects audience's reaction information, such as visiting the booth, participating the event through offered the information in this way and location information for the flow of movement, the present position so that it makes revision of existing each audience profile. After correcting the information, it extracts the individual's preference. hereunder, it provides recommend booth and event information. in other words, it provides optimal information for individual by amendment based on reaction information about recommending information built on basic profile. It provides personalized service dynamic and interactive with audience. This paper will be able to provide the most suitable information for each audience through circular and interactive structure and designed smart-phone application supportable for updating dynamic and interactive personalized service that is able to afford surrounding information in real time, as locating movement position through sensing. The proposed application collects user‘s context information and carrys information gathering function collecting the reaction about searched or provided information via sensing. and it also carrys information gathering function providing needed data for user in exhibition hall. In other words, it offers information about recommend booth of position foundation for user, location-based services of recommend booth and involves service providing detailed information for inside exhibition by using service of augmented reality, the map of whole exhibition as well. and it is also provided with SNS service that is able to keep information exchange besides intimacy. To provide this service, application is consisted of several module. first of all, it includes UNS identity module for sensing, and contain sensor information gathering module handling and collecting the perceived information through this module. Sensor information gathered like this transmits the information gathering server. and there is exhibition information interfacing with user and this module transmits to interesting information collection module through user's reaction besides interface. Interesting information collection module transmits collected information and If valid information out of the information gathering server that brings together sensing information and interesting information is sent to recommend server, the recommend server makes recommend information through inference with gathered valid information. If this server transmit by exhibition information process, exhibition information process module is provided with user by interface. Through this system it raises the dynamic, intelligent personalized service for user.
Kim, Jae-Kwon;Lee, Young-Ho;Kim, Jong-Hun;Park, Dong-Kyun;Kang, Un-Gu
Journal of the Korea Society of Computer and Information
/
v.17
no.8
/
pp.81-90
/
2012
For digital TV, the recommendation of u-health personalized service of semantic environment should be done after evaluating individual physical condition, illness and health condition. The existing recommendation method of u-health personalized service of semantic environment had low user satisfaction because its recommendation was dependent on ontology for analyzing significance. We propose the personalized service recommendation method based on Naive Bayesian Classifier for u-health service of semantic environment in digital TV. In accordance with the proposed method, the condition data is inferred by using ontology, and the transaction is saved. By applying naive bayesian classifier that uses preference information, the service is provided after inferring based on user preference information and transaction formed from ontology. The service inferred based on naive bayesian classifier shows higher precision and recall ratio of the contents recommendation rather than the existing method.
Park, Yeonjin;Song, Kyunga;Whang, Jaewon;Chang, Byeong-Mo
The Journal of the Korea Contents Association
/
v.15
no.9
/
pp.1-10
/
2015
We propose and implement a personalized tour recommendation system based on ontology. We utilize user's profile, dynamic information on search in the application, web search, and facebook for personalized recommendation. We construct tour database for England based on ontology for a demo service, and recommend tour spot considering an individual preference with tour database. This dynamic and personalized tour service makes it possible for individual to plan one's own tour by considering recommended tour spots for each individual.
Many personalized services that provide users with adaptive information according to users' preferences have been researched and developed. Push services are especially expected to be more economic impact because push services satisfy user's potential needs even if the user does not require anything. In this paper, we propose Semantic Web approach in order to enhance the performance of push services. Our approach provides infrastructure to recommend contents based on semantic association by enabling information of contents and user preferences to be described on service-specific ontologies that reflect features of each service. In addition, our approach can recommend users with adaptive information based on information represented in our description model. Our approach enables information of contents and user preferences to be described with rich expressiveness, and it provides semantic interoperability.
To create a personal menu, there are a number of considerations. Personal menus are different depending on the dietary therapy for disease, diet for weight control. In addition, the menu you choose, depending on the personal preference and the season, the weather, current personal feelings may differ. An individual should expect to recommend a balanced diet, taking nutritional status just for health care. In this paper, we propose a personalized menu recommendations System framework to meet such needs. To recommend menus the system receives data of the body's individual circumstances, ingredients situation, environmental conditions, psychological condition, emotional condition and provides a recommended menu by performing the inference using the ontology generated from external application systems. In order to provide such services, Internet of Things (IoT) environment should be the foundation. In this paper, we propose a personalized diet recommendation system framework in the IoT standardization environment that has oneM2M common service platform.
As online shopping malls continue to grow in popularity, various chances of consumption are provided to customers. Customers decide the purchase by exploiting information provided by shopping malls such as the reviews of actual purchasing users, the detailed information of items, and so on. It is required to provide objective and reliable information because customers have to decide on their own whether the massive information is credible. In this paper, we propose a personalized recommendation method considering an item confidence to recommend reliable items. The proposed method determines user preferences based on various behaviors for personalized recommendation. We also propose an user preference measurement that considers time weights to apply the latest propensity to consume. Finally, we predict the preference score of items that have not been used or purchased before, and we recommend items that have highest scores in terms of both the predicted preference score and the item confidence score.
Journal of the Korean Society for Library and Information Science
/
v.54
no.4
/
pp.147-167
/
2020
The purpose of this study is to analyze the factors influencing the intention of revisiting and recommending by applying a structural equation model, targeting the service quality factors of university libraries derived from previous studies. For 11 days from April 30th, 2020 to May 10th, 2020, a total of 127 user groups (undergraduate students, graduate students, professors/instructors) were surveyed on their intention to revisit and recommend. The analysis results are as follows. 'Materials' and 'service customization' were shown as quality dimensions that influence revisit. In addition, revisiting was found to have an effect on recommendation intention, and it was analyzed that 'materials' and 'service customization' affect not only revisit but also recommendation intention. In addition, 'service customization' was found to be a factor that directly affects the intention to recommend. Based on this, a method of applying the concept of customization to library services and marketing was proposed in an environment where users' needs are diversifying and becoming personalized.
Journal of the Korea Society of Computer and Information
/
v.22
no.12
/
pp.117-123
/
2017
The personalized search algorithm is a search system that analyzes the user's IP, cookies, log data, and search history to recommend the desired information. As a result, users are isolated in the information frame recommended by the algorithm. This is called 'Filter bubble' phenomenon. Most of the personalized data can be deleted or changed by the user, but data stored in the service provider's server is difficult to access. This study suggests a way to neutralize personalization by keeping on sending random query words. This is to confuse the data accumulated in the server while performing search activities with words that are not related to the user. We have analyzed the rank change of the URL while conducting the search activity with 500 random query words once using the personalized account as the experimental group. To prove the effect, we set up a new account and set it as a control. We then searched the same set of queries with these two accounts, stored the URL data, and scored the rank variation. The URLs ranked on the upper page are weighted more than the lower-ranked URLs. At the beginning of the experiment, the difference between the scores of the two accounts was insignificant. As experiments continue, the number of random query words accumulated in the server increases and results show meaningful difference.
With the emergence of ubiquitous computing era, various models for providing personalized service have been proposed, and, especially, several recommendation service schemes have been proposed to give tailored services to users proactively. However, the previous recommendation service schemes utilize a wide range of data without and filtering and consider the limited context-aware information to predict user preferences so that they are not adequate to provide personalized service to users. In this paper, we propose an adaptive recommendation service scheme which proactively provides suitable services based on the current context. We use accumulated interaction contexts (IC) between users and devices for predicting the user's preferences and recommend adaptive service based on the current context by utilizing clustering and collaborative filtering. The clustering algorithm improves efficiency of the recommendation service by focusing and analyzing the data that is collected from the locations nearby the users. Collaborative filtering guarantees an accurate recommendation, even when the data is insufficient. Finally, we evaluate the performance and the reliability of the proposed scheme by simulations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.