• 제목/요약/키워드: Personalized CRM

검색결과 27건 처리시간 0.021초

중소유통업체의 CRM 도입방안에 관한 연구 (A study on the CRM strategy for medium and small industry of distribution)

  • 김기평
    • 유통과학연구
    • /
    • 제8권3호
    • /
    • pp.37-47
    • /
    • 2010
  • CRM은 고객에 대한 가치를 잘 이해하고 고객정보를 바탕으로 하여 그들의 욕구를 충족시키고 나아가서는 평생가치(Life Time Value)를 극대화시킬 수 있는 전략수립 및 고객관리프로세스를 통합적으로 잘 운영하는 것이다. 또한 이를 고객들과 좋은 관계로 유지 발전시켜서 궁극적으로는 회사의 수익을 최대화하기 위한 경영활동이다. 성공적인 CRM을 위한 전략은 고객접점을 담당하는 조직의 변화와 고객관리 프로세스를 재설계한 후에, 기업이 장기적인 계획으로 고객관계를 유지시키는 마케팅 전략과 시장 환경대응에 적절한 방법으로 통합시스템을 구축하여 전사적인 프로그램으로 전개되어야 한다. 또한 CRM 프로그램을 꾸준히 기업 특성에 맞게 개선과 보완활동을 펴나가야만 한다. 특히 중소규모의 유통업체들의 성공적인 CRM을 위한 전략은 다음과 같다. 첫째, CRM에 대한 인식을 바꾸고 고객에 대한 관심을 깊이 기울여야 한다. 둘째, 선진기업들의 CRM 기법을 벤치마킹하여 성공 포인트를 찾아내어 활용한다. 셋째, 나만의 재주와 장기를 마케팅에 접목하는 아이디어를 통해 자사 여건에 알맞은 방법을 모색한다. 넷째, 작지만 화제성 강한 이벤트 행사 등을 통하여 스위스의 소상공인의 사례처럼 개별고객에 대한 관계증진을 키울 수 있는 CRM 모델을 개발하여야 한다.

  • PDF

고객중심의 CRM 구축비교 사례연구 (Customer-Centric CRM Implementation Case Study)

  • 이호섭
    • 경영과정보연구
    • /
    • 제23권
    • /
    • pp.25-40
    • /
    • 2007
  • In the highly competitive and divers world of financial market, customer is the single most important factor to company's survival. Especially, creating a relationship with valued customers is a key to success. CRM provides the mean to retain high value customers. It takes a prospect of what customers expect. Utilizing those knowledge can help the products and service meet the customers' needs, thereby maximizing customer satisfaction and company's profit. In this report, I am going to suggest a few ways to develop successful CRM in the life insurance industry. First, CRM should innovate the way of communication to keep pace with Web 2.0 era. In other words, the customer's needs should be caught by real-time communication than traditional off-line market research. Thus, the functionality and specification of products can be decided by customer's direct choice so that the customers are able to purchase the understanding and experience of the products. Second, CRM project should consider whether the initial strategy plan can promise the stable growth of customer at the first step. When planning strategy, the project needs to identify what customer wants and how to fulfill the needs with stable growth of the customer. In addition, the CRM should be developed by realizing that customer centric benefits ultimately guarantee the growth of the organization. Third, CRM systems should enhance the organization's ability to take the customer's insight in a 360 degree view and to capture the voice of the customer directly. In order to develop the best matched product package, more precise customer segmentation should be ahead of market segmentation strategy. Forth, the biggest reward from CRM will be a customer royalty program. Many successful banks are already planning and practicing customer royalty strategy. A comprehensive analysis of customers and their behavior allow organization to identify high value potential customers' needs and determine a strategy required to meet those needs. Even life insurance companies such as Prudential Korea are developing products designed for royal customers. Fifth, understanding and managing the experience of customer called Customer Experience Management also can increase customer satisfaction. Measuring only customers' experience and adapting it to marketing strategy make products position in the gap between the customers' expectation and experience not required by market. A key component of CEM is its application across all organizational functions. At last, the direction of change and development of CRM can be defined from the conceptualization of information technology represented by Ubiquitous and Web 2.0. Instead of just managing customer information, companies should take the initiative in personalized system with customer oriented strategy. Furthermore, with the regular communication between CRM stakeholders (Sales-Marketing-IT), customer's demand should be directly reflected to enterprise strategy in real time.

  • PDF

구전효과를 위한 O2O 기반의 소셜미디어 마케팅 방법: 사례분석을 중심으로 (O2O-based Social Media Marketing Method for Word-Of-Mouth Effect: Focused on the Analysis of Case Studies)

  • 김희진;최병주
    • 한국콘텐츠학회논문지
    • /
    • 제15권7호
    • /
    • pp.403-413
    • /
    • 2015
  • 최근 소셜미디어는 효과적인 광고 매체로써 입소문 마케팅의 주요 수단으로 활용되고 있으며, 이를 통한 구전효과를 극대화하기 위해서는 오프라인에서 고객경험 중심의 차별화된 콘텐츠를 얻는 것이 매우 중요하다. 그러나 아직까지 오프라인을 결합한 소셜미디어 마케팅을 지원하는 효과적인 서비스 및 방법의 부재로 인해 온라인 위주의 제한적인 방법으로 이루어지고 있다. 따라서 본 연구에서는 고객이 자발적으로 참여하는 오프라인에서 간편하고 쉽게 개인의 경험을 온라인으로 연결할 수 있는 O2O(Online to Offline) 기반의 소셜미디어 마케팅 방법을 제안한다. 또한 이를 적용한 실증 사례들을 분석함으로써 제안하는 방법의 효과성을 입증한다. 궁극적으로 본 연구는 유기적으로 온오프라인을 융합함으로써 고객은 개인화된 형태의 게시글을 통해 만족감을 얻게 되고, 기업은 마케팅 전략을 세우는데 유용한 양질의 CRM 정보를 제공받음으로써 소셜미디어 마케팅 시장의 활성화에 기여할 수 있을 것이다.

RFM 기법과 연관성 규칙을 이용한 개인화된 전자상거래 추천시스템 (Personalized e-Commerce Recommendation System using RFM method and Association Rules)

  • 진병운;조영성;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권12호
    • /
    • pp.227-235
    • /
    • 2010
  • 이 논문은 RFM 기법과 연관성 분석을 이용한 개인화된 전자상거래 추천 시스템을 제안한다. 제안된 전자상거래 추천시스템은 사용자의 평가 자료에 의존하지 않고 묵시적인(Implicity)방법을 이용하여 고객정보와 구매이력 정보를 기반으로 RFM(Recency, Frequency, Monetary) 기법을 이용한 고객 세분화와 교차판매(cross-sell)관계를 찾는 연관성 분석을 이용한 개선된 시스템이다. 또한 고객군별 구매특성 분석을 통하여 효율적인 마케팅 전략과 고객관계관리(CRM: Customer Relationship Management)방법을 제시한다. 현업에서 사용하는 데이터 셋을 구성하여 실험 및 평가를 통해서 효용성을 입증 및 평가하여 일대일 웹 마케팅을 실현하였다.

항공사 EBT 프로그램 모델 개발 (Development of Airline EBT Program Model)

  • 최지헌;김성엽;김현덕
    • 한국항행학회논문지
    • /
    • 제27권5호
    • /
    • pp.528-533
    • /
    • 2023
  • 항공사에서는 보다 효과적인 교육훈련을 실시하고자 실무와 연계한 훈련 프로그램을 도입하고자 하였다. 이를 위해 항공사들은 항공 인력의 실무 역량 강화 및 안전 문화 증진을 위해 증거 기반 훈련(EBT)을 시행해 오고 있다. 항공사들은 효과적인 EBT 모델 개발을 위해 운항 데이터 및 사례 연구를 분석하여 항공 인력의 역량 및 실무 능력을 체계적으로 평가할 수 있다. 또한 승무원 자원 관리(CRM)와 같은 기술적 방법 및 인적 요인을 포함하는 전체적인 접근법을 적용하여 EBT 모델을 구성할 수 있다. EBT 도입으로 인해 항공사들은 조종사의 실무 업무에 대한 진단 및 피드백 시스템을 구축하게 되며 개인 맞춤형 교육을 제공할 수 있고 교육 성과를 거쳐 교육 효과를 검증하는 교육훈련 체계를 확립하게 된다.

사례기반추론 기법을 이용한 개인화된 추천시스템 설계 및 구현 (Design and Implementation of personalized recommendation system using Case-based Reasoning Technique)

  • 김영지;문현정;옥수호;우용태
    • 정보처리학회논문지D
    • /
    • 제9D권6호
    • /
    • pp.1009-1016
    • /
    • 2002
  • 본 논문에서는 인터넷 컨텐츠 사이트에서 묵시적인 평가정보를 이용한 새로운 사례기반 추천시스템을 설계하고 구현하였다. 본 시스템은 크게 사용자 프로파일 생성 모듈, 유사도 계산 및 추천 모듈, 개인화된 메일링 모듈로 구성된다. 사용자 프로파일 생성 모듈에서는 사용자가 컨텐츠를 이용하면서 남긴 로그 기록을 이용하여 컨텐츠에 대한 개인별 선호도를 추출할 수 있는 속성내, 속성간 가중치를 제시하였다. 유사도 계산 및 추천 모듈에서는 사용자 프로파일과 새로운 컨텐츠간의 유사도를 측정하기 위한 유사도 계산식을 제시하였다. 개인화된 메일링 모듈에서는 개인별 선호도에 의해 구성된 추천 컨텐츠를 플렛폼-독립적인 XML 문서 형식으로 변환하여 발송한다. 제안된 모델에 대한 추천 효율을 검증하기 위해 평균절대오차(MAE)와 반응자작용특성(ROC) 값을 이용하여 제안한 추천 모델과 협동적 필터링 기법과 비교 실험하였다. 실험결과, 본 논문에서 제안한 모델의 추천 효율이 기존의 협동적 필터링 기법보다 우수함을 보였다.

웹 마이닝을 이용한 개인 광고기법에 관한 연구 (A Study on Personalized Advertisement System Using Web Mining)

  • 김은수;송강수;이원돈;송정길
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.92-103
    • /
    • 2003
  • 최근 전자상거래의 발전과 인터넷 사용자의 급증으로 온라인 상에서 수많은 광고들이 서비스되고 있다. 하지만 이러한 광고서비스는 사용자들의 성향 분석을 기초로 하기보다는 해당 광고의 일방적 서비스에 그치고 있다. 따라서 많은 웹사이트들이 해당 광고의 효율적 서비스를 위해 개인화된 광고서비스를 원하고 있고 해당 서버의 로그 분석을 통한 서비스를 연구 및 시행하고 있다. 본 논문에서는 서버측 로그데이터의 분석이 아닌 로컬 시스템의 로그데이터를 이용하여 사용자의 선호도와 성향을 분석한다. 또한 해당 사이트 별 분류 카테고리를 만들어 해당 분류의 가중치를 부여함으로써 개인화된 광고 시스템을 제안하려고 한다. 사용자의 선호도 분석은 웹 개인화 기법 중 협업 필터링의 대상이 되는 사용자 선호도 정보를 방문 사이트 분류에 사용하고 학습에이전트의 대상이 되는 인터넷 사용자의 행동을 해당 사이트의 방문횟수로 가정하여 사용자의 성향분석을 시도하였다. 사용자의 선호도를 벡터로 표현하고, 성향분석 결과를 단순 적용형태가 아닌 연속적 데이터로 간주하였으며 이전 데이터와 이후 데이터의 성향분석 변화를 제안하는 기법을 이용하여 새롭게 분석하고 피드백 시킴으로써 지속적인 갱신과 적용을 할 수 있도록 제안하였다. 이러한 결과를 통해 해당 분류의 광고들을 선정하고 선정된 광고에 사용자 성향분석과 동일한 과정을 적용시킴으로써 차별화된 광고 서비스를 제공할 수 있는 방법을 제시하였다.

  • PDF

인터넷 쇼핑몰에서의 지능화된 마케팅과 상품화 계획 기법 (Intelligent Marketing and Merchandising Techniques for an Internet Shopping Mall)

  • 하성호;박상찬
    • Asia pacific journal of information systems
    • /
    • 제12권3호
    • /
    • pp.71-88
    • /
    • 2002
  • In this paper, intelligent marketing and merchandising methods utilizing data mining and Web mining techniques are proposed for online retailers to survive and succeed in gaining competitive advantage in a highly competitive environment. The first part of this paper explains the procedures of one-to-one marketing based on customer relationship management(CRM) techniques and personalized recommendation lists generation. The second part illustrates Web merchandising methods utilizing data mining techniques, such as association and sequential pattern mining. We expect that our Web marketing and merchandising methods will both provide a currently operating Internet shopping mall with more selling opportunities and give more useful product information to customers.

디지털참고봉사를 위한 MyLibrary에 관한 연구 (A Study on the MyLibrary for Digital Reference Service)

  • 김휘출
    • 한국비블리아학회지
    • /
    • 제12권1호
    • /
    • pp.101-115
    • /
    • 2001
  • 웹을 이용한 도서관 정보서비스가 활발해지고 있다. 그러나 도서관 홈페이지에는 계속적으로 많은 콘텐츠들로 축적되기 때문에 이용자들은 효율적으로 정보를 선별하여 이용하지 못하고 있는 실정이다. 이에 도서관에서는 홈페이지에서 제공하는 각종 콘텐츠들을 개인별로 맞춤화한 서비스인 MyLibrary가 이루어지고 있다. MyLibrary는 주로 대형도서관에 적합하게 사용되고 있지만 웹페이지를 이용한 디지털참고봉사 기능을 보완할 수 있는 도구로서 유용하게 사용될 수 있다.

  • PDF

재구성된 제품 계층도를 이용한 협업 추천 방법론 및 그 평가 (Collaborative Recommendations using Adjusted Product Hierarchy : Methodology and Evaluation)

  • Cho, Yoon-Ho;Park, Su-Kyung;Ahn, Do-Hyun;Kim, Jae-Kyeong
    • 한국경영과학회지
    • /
    • 제29권2호
    • /
    • pp.59-75
    • /
    • 2004
  • Recommendation is a personalized information filtering technology to help customers find which products they would like to purchase. Collaborative filtering works by matching customer preferences to other customers in making recommendations. But collaborative filtering based recommendations have two major limitations, sparsity and scalability. To overcome these problems we suggest using adjusted product hierarchy, grain. This methodology focuses on dimensionality reduction and uses a marketer's specific knowledge or experience to improve recommendation quality. The qualify of recommendations using each grain is compared with others by several experimentations. Experiments present that the usage of a grain holds the promise of allowing CF-based recommendations to scale to large data sets and at the same time produces better recommendations. In addition. our methodology is proved to save the computation time by 3∼4 times compared with collaborative filtering.