• 제목/요약/키워드: Peroxiredoxin

검색결과 105건 처리시간 0.024초

허혈성 대뇌손상시 curcumin 투여에 의한 peroxiredoxin-5 발현의 변화 (Change of Peroxiredoxin-5 Expression by Curcumin Treatment in Cerebral Ischemia)

  • 김상아;고필옥
    • 농업생명과학연구
    • /
    • 제50권3호
    • /
    • pp.129-139
    • /
    • 2016
  • Curcumin은 항산화제로서 신경세포의 보호작용에 관여하며, peroxiredoxin-5는 활성산소의 형성을 저해하여 산화적 스트레스로부터 신경세포를 보호한다고 알려져 있다. 본 연구는 허혈성 대뇌손상모델에서 curcumin에 의해 조절되는 peroxiredoxin-5 발현의 변화에 관하여 조사하였다. 실험동물은 흰쥐(Sprague-Dawley, 수컷)를 사용했으며, 허혈성 대뇌손상을 유도하기 위하여 중간대뇌동맥폐쇄술(MCAO)을 실시하였다. MCAO를 시행한 1시간 후에 curcumin(50mg/kg B.W.) 또는 vehicle을 복강으로 주사하였고, MCAO을 실시한 24시간 후 대뇌피질의 조직을 적출하였다. Hematoxylin과 eosin 조직염색 결과 MCAO를 시행한 대뇌피질에서는 신경세포의 괴사 소견을 보였지만, curcumin 투여군에서 이들 신경세포의 손상이 완화되어 있어 MCAO로 유도된 대뇌 손상시 curcumin의 보호효과를 확인하였다. 또한 MCAO를 실시한 vehicle+MCAO 실험군에서 peroxiredoxin-5 단백질의 발현은 감소하였으나, curcumin을 처리한 curcumin+MCAO 실험군에서는 vehicle+MCAO 실험군의 감소에 비해 감소의 폭이 현저히 줄어들어 MCAO를 시행하지 않은 sham군의 발현 수준으로 유지되었다. Reverse-transcription PCR과 Western blot 분석을 통해 중간대뇌동맥폐쇄술로 유도된 허혈성 대뇌손상 모델에서 peroxiredoxin-5 발현의 감소와 curcumin의 투여에 의한 peroxiredoxin-5 발현 감소의 완화를 확인하였다. 본 연구의 결과는 curcumin의 처리는 MCAO로 인한 peroxiredoxin-5 발현의 감소를 억제시킨다는 것을 보여주었다. 따라서, 대뇌손상 모델동물에서 curcumin은 MCAO로 유도된 peroxiredoxin-5 발현의 감소 정도를 완화시킴으로서 curcumin이 신경세포 보호작용에 기여하는 것으로 사료된다.

cDNA Sequence and mRNA Expression of a Novel Peroxiredoxin from the Firefly, pyrocoelia rufa

  • Jin, Byung-Rae;Lee, Kwang-Sik;Kim, Seong-Ryul;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제4권2호
    • /
    • pp.101-107
    • /
    • 2002
  • We describe here the cDNA sequence and mRNA expression of a novel family of the antioxidant protein, peroxiredoxin, from the firefly, Pyracoetia ruin. The 555 bp cDNA sequence codes for a 185 amino acid protein with a calculated molecular mass of approximately 21 kDa. The deduced protein of P. rufa peroxiredoxin gene contains two conserved cysteine residues. Alignment of the deduced protein of P. rufa peroxiredoxin gene showed 71.1% protein sequenceidentity to known insect Drosophila melanogaster peroxiredoxin. Northern blot analysis revealed that the P. rufa peroxiredoxin is specifically expressed in the fat body of P. rufa larvae.

Over-expressed Peroxiredoxin I Protects against Oxidative Damage in Mouse Embryonic Fibroblasts Lacking Peroxiredoxin II

  • Kim, Seong-Gon;Kim, Jae-Young;Ryoo, Zae-Young;Lee, Sang-Gyu
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.451-459
    • /
    • 2011
  • Peroxiredoxins (Prxs) have a critical role in protecting cells against oxidative damage generated by reactive oxygen species (ROS). PrxI and PrxII are more than 90% homologous in their amino acid sequences, and both proteins reduce $H_2O_2$. In this study, an over-expression plasmid carrying PrxI was transfected into $PrxII^{-/-}$ mouse embryonic fibroblasts (MEFs) to investigate potential compensatory relationships between PrxI and PrxII. ROS levels induced by oxidative stress were increased in $PrxII^{-/-}$ MEFs as compared to wild-type MEFs. Moreover, exposure of $PrxII^{-/-}$ MEFs to $H_2O_2$ caused a reduction in cell viability of about 10%, and the proportion of cell death was increased compared to mock-treated $PrxII^{-/-}$ MEFs. However, transient over-expression of PrxI in $PrxII^{-/-}$ MEFs conferred increased resistance against the oxidative damage, as evidenced by increased cell viability and reduced intracellular ROS levels under $H_2O_2$ stress conditions. The findings suggest that over-expressed PrxI can partly compensate for the loss of PrxII function in PrxII-deficient MEFs.

Expression Profiles of Peroxiredoxin Family in Murine Reproductive Organs

  • Han, Ying-Hao;Lee, Tae-Hoon;Kim, Sun-Uk;Kim, Sang-Keun;Yu, Dae-Yeul
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2002년도 춘계학술발표대회 발표논문초록집
    • /
    • pp.63-63
    • /
    • 2002
  • Peroxiredoxin (Prx) has been known to play an important role in the protection against oxidative damage of reactive oxygen species (ROS). Recent reports implied that the ROS may be closely related with the reproductive system. To define the possible roles of Prx family in reproduction, the expression profiles were investigated in reproductive organs of four murine strains. (omitted)

  • PDF

Distribution and Features of the Six Classes of Peroxiredoxins

  • Poole, Leslie B.;Nelson, Kimberly J.
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.53-59
    • /
    • 2016
  • Peroxiredoxins are cysteine-dependent peroxide reductases that group into 6 different, structurally discernable classes. In 2011, our research team reported the application of a bioinformatic approach called active site profiling to extract active site-proximal sequence segments from the 29 distinct, structurally-characterized peroxiredoxins available at the time. These extracted sequences were then used to create unique profiles for the six groups which were subsequently used to search GenBank(nr), allowing identification of ~3500 peroxiredoxin sequences and their respective subgroups. Summarized in this minireview are the features and phylogenetic distributions of each of these peroxiredoxin subgroups; an example is also provided illustrating the use of the web accessible, searchable database known as PREX to identify subfamily-specific peroxiredoxin sequences for the organism Vitis vinifera (grape).

애기장대 peroxiredoxins (Prxs)과 sulphiredoxin1 (Srx1)의 작용기작 (Working Mechanism of Peroxiredoxins (Prxs) and Sulphiredoxin1 (Srx1) in Arabidopsis thaliana)

  • 김민갑;수디 무하마드;박상렬;황덕주;배신철
    • 생명과학회지
    • /
    • 제20권12호
    • /
    • pp.1777-1783
    • /
    • 2010
  • 식물체는 대사과정의 부산물로서 또는 생물학적으로 피해를 줄 수 있는 다양한 종류의 외부 스트레스에 직면했을 활성산소(Reactive Oxygen Species, ROS)를 생산한다. 이러한 oxidative 스트레스로부터 자신들을 보호하기 위하여 식물세포들은 다양한 종류의 항산화 단백질들을 보유하고 있다. 하지만 이들의 작용기작은 여전히 자세히 밝혀지지 않았다. Peroxiredoxins (Prxs)은 식물체에 광범위하게 존재하는 thiol-을 함유한 항산화 단백질로 N-말단에 존재하는 cysteine 잔기를 이용하여 hydrogen peroxide를 환원한다. 이러한 과정에서 peroxiredoxins의 활성부위인 cysteine 잔기는 선택적으로 cysteine sulfinic acid로 산화됨으로써 peroxidase activity의 불활성화를 일으킨다. 이러한 산화과정은 비가역적으로 일어난다. 최근 발견된 진핵생물들에 잘 보존된 sulphiredoxin (Srx1)이라 불리는 단백질은 cysteine-sulphinic acid를 환원시키는 기능을 지닌다. 본 논문에서는 애기장대에 존재하는 Prxs와 Srx의 기능에 대하여 서술할 예정이다.

Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction

  • Latimer, Heather R.;Veal, Elizabeth A.
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.40-45
    • /
    • 2016
  • Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin.

The Effects of Peroxiredoxin III on Human HeLa Cell Proliferation

  • Choi, Soonyoung;Kang, Sangwon
    • IMMUNE NETWORK
    • /
    • 제3권4호
    • /
    • pp.276-280
    • /
    • 2003
  • Background: Peroxidases (Prx) of the peroxiredoxin family reduce hydrogen peroxide and alkyl hydroperoxides to water and alcohol respectively. Hydrogen peroxide is implicated as an intracellular messenger in various cellular responses such as proliferation and differentiation. And Prx I activity is regulated by Cdc-2 mediated phosphorylation. This work was undertaken to investigate the proliferation role of peroxiredoxin III as a member of Prx family in Prx III overexpressed HeLa cell line. Methods: To provide further evidence of proliferation, we selected Prx III stably expressed HeLa Tet-off cell lines. Cell proliferation was examined by using proliferation reagent WST-1 in the presence or absence of doxycycline. Prx III, 2-cys Prx enzymes exist as homodimer. The activation of Prx III heterodimer with induced and endogenous Prx III was examined by immunoprecipitation. Results: Immunoprecipitation analysis of the induced and endogenous Prx III with anti-myc showed that the induced wild type (WT) and dominant negative (DN) Prx III from HeLa Prx III Tet-off stable cell heterodimerized with endogenous Prx III each other. And the expression level of induced Prx III was examined after addition of doxycycline. By 72 hr, the expression level of induced Prx III was diminished gradually and the half-life of the induced wild type Prx III was approximately 17 hr. The proliferation experiment demonstrated that the relative proliferation value of induced and endogenous WT Prx III stable cell has no changes but the DN Prx III induced HeLa Tet-off stable cells were lower than endogenous Prx III. Conclusion: In conclusion, the HeLa dominant negative Prx III Tet-off stable cells were decreased the proliferation.

고구마 배양세포에서 Peroxiredoxin cDNA의 분리 및 발현 특성 (Molecular Cloning and Characterization of a Peroxiredoxin cDNA from Cell Cultures of Sweetpotato)

  • 박수영;류선화;권석윤;김종국;곽상수
    • Journal of Plant Biotechnology
    • /
    • 제30권2호
    • /
    • pp.135-141
    • /
    • 2003
  • Peroxiredoxin(Pix) are large family of peroxidases that reduce alkyl hydroperoxides and hydrogen peroxide. A cDNA clone (referred to as swPrxl) encoding Pix was from a sweetpotato cDNA library constructed from suspension-sultured cells, and its expression was investigated in terms of stress. The swPrxl contained an open reading frame (ORF) encoding mature protein of 193 amino acids with calculated molecular mass of 20.8kDa. The predicted amino acid sequence of swPrxl has two conserved cysteines that are essential resicues for the reduction of peroxides. It showed high amino acid sequence homology ot PixIIF of Arabidopsis (77%) and putative Prx of rice(72%). RNA gel-blot analysis showed that swPrxl gene was expressed dominantly in leave among intact tissues, and also highly detect in suspension-cultured cells. Interestingly, the level of swPrxl transcripts was almost the same regardless of the growth stage in suspension culture. Furthermore, the transcription level of swPrxl gene was not significantly changed in response to various stress treatments such as wounding, extreme temperature and stress-related chemicals RT-PCR analyses.

Isolation and Characterization of a Type II Peroxiredoxin Gene from Panax ginseng C. A. Meyer

  • Kim, Yu-Jin;Lee, Jung-Hye;Lee, Ok-Ran;Shim, Ju-Sun;Jung, Seok-Kyu;Son, Na-Ri;Kim, Ju-Han;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제34권4호
    • /
    • pp.296-303
    • /
    • 2010
  • A peroxiredoxin cDNA (PgPrx) was isolated and characterized from the leaves of Panax ginseng. The cDNA is 716 nucleotides long and has an open reading frame of 489 base pairs with a deduced amino acid sequence of 162 residues. The calculated molecular mass of the mature protein is approximately 17.4 kDa with a predicted isoelectric point of 5.37. A GenBank BlastX search revealed that the deduced amino acid sequence of PgPrx shares a high degree homology with type II peroxiredoxin (Prx) proteins in other plants. The PgPrx gene was highly expressed in leaves, and expressed at a low level in the stem. To analyze the gene expression of PgPrx in response to various abiotic stresses, we utilized real-time quantitative RT-PCR. Our results reveal that PgPrx expression is induced by ultraviolet irradiation, low temperature, and salt. The induction of PgPrx in response to abiotic stimuli suggests that ginseng Prx may function to protect the host against environmental stresses.