• Title/Summary/Keyword: Permutation Entropy

Search Result 11, Processing Time 0.03 seconds

State detection of explosive welding structure by dual-tree complex wavelet transform based permutation entropy

  • Si, Yue;Zhang, ZhouSuo;Cheng, Wei;Yuan, FeiChen
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.569-583
    • /
    • 2015
  • Recent years, explosive welding structures have been widely used in many engineering fields. The bonding state detection of explosive welding structures is significant to prevent unscheduled failures and even catastrophic accidents. However, this task still faces challenges due to the complexity of the bonding interface. In this paper, a new method called dual-tree complex wavelet transform based permutation entropy (DTCWT-PE) is proposed to detect bonding state of such structures. Benefiting from the complex analytical wavelet function, the dual-tree complex wavelet transform (DTCWT) has better shift invariance and reduced spectral aliasing compared with the traditional wavelet transform. All those characters are good for characterizing the vibration response signals. Furthermore, as a statistical measure, permutation entropy (PE) quantifies the complexity of non-stationary signals through phase space reconstruction, and thus it can be used as a viable tool to detect the change of bonding state. In order to more accurate identification and detection of bonding state, PE values derived from DTCWT coefficients are proposed to extract the state information from the vibration response signal of explosive welding structure, and then the extracted PE values serve as input vectors of support vector machine (SVM) to identify the bonding state of the structure. The experiments on bonding state detection of explosive welding pipes are presented to illustrate the feasibility and effectiveness of the proposed method.

Travel mode classification method based on travel track information

  • Kim, Hye-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.133-142
    • /
    • 2021
  • Travel pattern recognition is widely used in many aspects such as user trajectory query, user behavior prediction, interest recommendation based on user location, user privacy protection and municipal transportation planning. Because the current recognition accuracy cannot meet the application requirements, the study of travel pattern recognition is the focus of trajectory data research. With the popularization of GPS navigation technology and intelligent mobile devices, a large amount of user mobile data information can be obtained from it, and many meaningful researches can be carried out based on this information. In the current travel pattern research method, the feature extraction of trajectory is limited to the basic attributes of trajectory (speed, angle, acceleration, etc.). In this paper, permutation entropy was used as an eigenvalue of trajectory to participate in the research of trajectory classification, and also used as an attribute to measure the complexity of time series. Velocity permutation entropy and angle permutation entropy were used as characteristics of trajectory to participate in the classification of travel patterns, and the accuracy of attribute classification based on permutation entropy used in this paper reached 81.47%.

RIGHT RÉNYI MEAN AND TENSOR PRODUCT

  • HWANG, JINMI;JEONG, MIRAN;KIM, SEJONG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.751-760
    • /
    • 2021
  • We study in this paper the right Rényi mean for a quantum divergence induced from the α - z Rényi relative entropy. Many properties including homogeneity, invariance under permutation, repetition and unitary congruence transformation, and determinantal inequality have been presented. Moreover, we give the identity of two right Rényi means with respect to tensor product.

Research on Identifying Manipulated Operation Data of Cyber-Physical System Based on Permutation Entropy (순열 엔트로피 기반 사이버 물리 시스템의 조작된 운영 데이터 식별 방안 연구)

  • Ka-Kyung Kim;Ieck-Chae Euom
    • Convergence Security Journal
    • /
    • v.24 no.3
    • /
    • pp.67-79
    • /
    • 2024
  • Attackers targeting critical infrastructure, such as energy plants, conduct intelligent and sophisticated attacks that conceal their traces until their objectives are achieved. Manipulating measurement data of cyber-physical systems, which are connected to the physical environment, directly impacts human safety. Given the unique characteristics of cyber-physical systems, a differentiated approach is necessary, distinct from traditional IT environment anomaly detection and identification methods. This study proposes a methodology that integrates both recursive filtering and an entropy-based approach to identify maliciously manipulated measurement data, considering the characteristics of cyber-physical systems. By applying the proposed approach to synthesized data based on a publicly available industrial control system security dataset in our research environment, the results demonstrate its effectiveness in identifying manipulated operational data.

A novel framework for the construction of cryptographically secure S-boxes

  • Razi Arshad;Mudassir Jalil;Muzamal Hussain;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • In symmetric cryptography, a cryptographically secure Substitution-Box (S-Box) is a key component of a block cipher. S-Box adds a confusion layer in block ciphers that provide resistance against well-known attacks. The generation of a cryptographically secure S-Box depends upon its generation mechanism. In this paper, we propose a novel framework for the construction of cryptographically secure S-Boxes. This framework uses a combination of linear fractional transformation and permutation functions. S-Boxes security is analyzed against well-known security criteria that include nonlinearity, bijectiveness, strict avalanche and bits independence criteria, linear and differential approximation probability. The S-Boxes can be used in the encryption of any grayscale digital images. The encrypted images are analyzed against well-known image analysis criteria that include pixel changing rates, correlation, entropy, and average change of intensity. The analysis of the encrypted image shows that our image encryption scheme is secure.

An Efficient Image Encryption Scheme Based on Quintuple Encryption Using Gumowski-Mira and Tent Maps

  • Hanchinamani, Gururaj;Kulkarni, Linganagouda
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.56-69
    • /
    • 2015
  • This paper proposes an efficient image encryption scheme based on quintuple encryption using two chaotic maps. The encryption process is realized with quintuple encryption by calling the encrypt(E) and decrypt(D) functions five times with five different keys in the form EDEEE. The decryption process is accomplished in the reverse direction by invoking the encrypt and decrypt functions in the form DDDED. The keys for the quintuple encryption/decryption processes are generated by using a Tent map. The chaotic values for the encrypt/decrypt operations are generated by using a Gumowski-Mira map. The encrypt function E is composed of three stages: permutation, pixel value rotation and diffusion. The permutation stage scrambles all the rows and columns to chaotically generated positions. This stage reduces the correlation radically among the neighboring pixels. The pixel value rotation stage circularly rotates all the pixels either left or right, and the amount of rotation is based on chaotic values. The last stage performs the diffusion four times by scanning the image in four different directions: Horizontally, Vertically, Principal diagonally and Secondary diagonally. Each of the four diffusion steps performs the diffusion in two directions (forward and backward) with two previously diffused pixels and two chaotic values. This stage ensures the resistance against the differential attacks. The security and performance of the proposed method is investigated thoroughly by using key space, statistical, differential, entropy and performance analysis. The experimental results confirm that the proposed scheme is computationally fast with security intact.

Image Encryption Based on Quadruple Encryption using Henon and Circle Chaotic Maps

  • Hanchinamani, Gururaj;Kulkarni, Linganagouda
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.193-206
    • /
    • 2015
  • In this paper a new approach for image encryption based on quadruple encryption with dual chaotic maps is proposed. The encryption process is performed with quadruple encryption by invoking the encrypt and decrypt routines with different keys in the sequence EDEE. The decryption process is performed in the reverse direction DDED. The key generation for the quadruple encryption is achieved with a 1D Circle map. The chaotic values for the encrypt and decrypt routines are generated by using a 2D Henon map. The Encrypt routine E is composed of three stages i.e. permutation, pixel value rotation and diffusion. The permutation is achieved by: row and column scrambling with chaotic values, exchanging the lower and the upper principal and secondary diagonal elements based on the chaotic values. The second stage circularly rotates all the pixel values based on the chaotic values. The last stage performs the diffusion in two directions (forward and backward) with two previously diffused pixels and two chaotic values. The security and performance of the proposed scheme are assessed thoroughly by using the key space, statistical, differential, entropy and performance analysis. The proposed scheme is computationally fast with security intact.

A New Approach for Image Encryption Based on Cyclic Rotations and Multiple Blockwise Diffusions Using Pomeau-Manneville and Sin Maps

  • Hanchinamani, Gururaj;Kulakarni, Linganagouda
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.187-198
    • /
    • 2014
  • In this paper an efficient image encryption scheme based on cyclic rotations and multiple blockwise diffusions with two chaotic maps is proposed. A Sin map is used to generate round keys for the encryption/decryption process. A Pomeau-Manneville map is used to generate chaotic values for permutation, pixel value rotation and diffusion operations. The encryption scheme is composed of three stages: permutation, pixel value rotation and diffusion. The permutation stage performs four operations on the image: row shuffling, column shuffling, cyclic rotation of all the rows and cyclic rotation of all the columns. This stage reduces the correlation significantly among neighboring pixels. The second stage performs circular rotation of pixel values twice by scanning the image horizontally and vertically. The amount of rotation is based on $M{\times}N$ chaotic values. The last stage performs the diffusion four times by scanning the image in four different ways: block of $8{\times}8$ pixels, block of $16{\times}16$ pixels, principal diagonally, and secondary diagonally. Each of the above four diffusions performs the diffusion in two directions (forwards and backwards) with two previously diffused pixels and two chaotic values. This stage makes the scheme resistant to differential attacks. The security and performance of the proposed method is analyzed systematically by using the key space, entropy, statistical, differential and performance analysis. The experimental results confirm that the proposed method is computationally efficient with high security.

A Novel Image Encryption Using Calligraphy Based Scan Method and Random Number

  • Sivakumar, T;Venkatesan, R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2317-2337
    • /
    • 2015
  • Cryptography provides an effective solution to secure the communication over public networks. The communication over public networks that includes electronic commerce, business and military services, necessitates the requirement of simple and robust encryption techniques. In this paper, a novel image encryption method which employs calligraphy based hybrid scan and random number is presented. The original image is scrambled by pixel position permutation with calligraphy based diagonal and novel calligraphy based scan patterns. The cipher image is obtained by XORing the scrambled image with random numbers. The suggested method resists statistical, differential, entropy, and noise attacks which have been demonstrated with a set of standard images.

A study on end-to-end speaker diarization system using single-label classification (단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구)

  • Jaehee Jung;Wooil Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.536-543
    • /
    • 2023
  • Speaker diarization, which labels for "who spoken when?" in speech with multiple speakers, has been studied on a deep neural network-based end-to-end method for labeling on speech overlap and optimization of speaker diarization models. Most deep neural network-based end-to-end speaker diarization systems perform multi-label classification problem that predicts the labels of all speakers spoken in each frame of speech. However, the performance of the multi-label-based model varies greatly depending on what the threshold is set to. In this paper, it is studied a speaker diarization system using single-label classification so that speaker diarization can be performed without thresholds. The proposed model estimate labels from the output of the model by converting speaker labels into a single label. To consider speaker label permutations in the training, the proposed model is used a combination of Permutation Invariant Training (PIT) loss and cross-entropy loss. In addition, how to add the residual connection structures to model is studied for effective learning of speaker diarization models with deep structures. The experiment used the Librispech database to generate and use simulated noise data for two speakers. When compared with the proposed method and baseline model using the Diarization Error Rate (DER) performance the proposed method can be labeling without threshold, and it has improved performance by about 20.7 %.