DOI QR코드

DOI QR Code

RIGHT RÉNYI MEAN AND TENSOR PRODUCT

  • HWANG, JINMI (Department of Mathematics, College of Natural Sciences, Chungbuk National University) ;
  • JEONG, MIRAN (Department of Mathematics, College of Natural Sciences, Chungbuk National University) ;
  • KIM, SEJONG (Department of Mathematics, College of Natural Sciences, Chungbuk National University)
  • Received : 2021.04.20
  • Accepted : 2021.07.12
  • Published : 2021.09.30

Abstract

We study in this paper the right Rényi mean for a quantum divergence induced from the α - z Rényi relative entropy. Many properties including homogeneity, invariance under permutation, repetition and unitary congruence transformation, and determinantal inequality have been presented. Moreover, we give the identity of two right Rényi means with respect to tensor product.

Keywords

Acknowledgement

This research was supported by Chungbuk National University Korea National University Development Project(2020).

References

  1. M.R. Ackermann and J. Blomer, Coresets and approximate clustering for Bregman divergences, SODA '09: Proceedings of the twentieth annual ACM-SIAM symposium on Discrete Algorithms (2009), 1088-1097.
  2. K. Audenaert and N. Datta, α - z-Renyi relative entropies, J. Math. Phys. 56 (2015), 022202. https://doi.org/10.1063/1.4906367
  3. A. Banerjee, S. Merugu, I. Dhillon and J. Ghosh, Clustering with Bregman divergences, J. Mach. Learn. Res. 6 (2005), 1705-1749.
  4. R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics, Princeton University Press, 2007.
  5. R. Bhatia, S. Gaubert, and T. Jain, Matrix versions of the Hellinger distance, Lett. Math. Phys. 109 (2019), 1777-1804. https://doi.org/10.1007/s11005-019-01156-0
  6. R. Bhatia, T. Jain and Y. Lim, On the Bures-Wasserstein distance between positive definite matrices, Expo. Math. 37 (2019), 165-191. https://doi.org/10.1016/j.exmath.2018.01.002
  7. R. Bhatia, T. Jain and Y. Lim, Strong convexity of sandwiched entropies and related optimization problems, Rev. Math. Phys. 30 (2018), pp 18.
  8. Z. Chebbi and M. Moakher, Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function, Linear Algebra Appl. 436 (2012), 1872-1889. https://doi.org/10.1016/j.laa.2011.12.003
  9. I.S. Dhillon and J.A. Tropp, Matrix nearness problems with Bregman divergences, SIAM J. Matrix Anal. Appl. 29 (2007), 1120-1146. https://doi.org/10.1137/060649021
  10. T.H. Dinh, C.T. Le, B.K. Vo and T.D. Vuong, The α - z-Bures Wasserstein divergence, Linear Algebra Appl. 624 (2021), 267-280. https://doi.org/10.1016/j.laa.2021.04.007
  11. R.A. Horn and C.R. Johnson, Matrix Analysis, 2nd edition, Cambridge University Press, 2013.
  12. J.P.W. Pluim, J.B.A. Maintz and M.A. Viergever, f-Information measures in medical image registration, IEEE Trans. Med. Imaging 23 (2004), 1508-1516. https://doi.org/10.1109/TMI.2004.836872
  13. A. Ullah, Uses of entropy and divergence measures for evaluating econometric approximations and inference, J. Economet. 107 (2002), 313-326. https://doi.org/10.1016/S0304-4076(01)00126-9
  14. R. Vergin and D. O'Shaughnessy, On the use of some divergence measures in speaker recognition, IEEE Int. Conf. Acoust. Speech Signal Process 1 (1999), 309-312.
  15. M. Wilde, A. Winter and D. Yang, Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy, Comm. Math. Phys. 331 (2014), 593-622. https://doi.org/10.1007/s00220-014-2122-x
  16. F. Zhang, Matrix Theory: Basic Results and Techniques, 2nd edition, Springer-Verlag, New York, 2011.