• Title/Summary/Keyword: Permittivities

Search Result 57, Processing Time 0.02 seconds

Permittivities of the E-Glass Fabric/Epoxy Composite Laminates Containing Carbon Black Dispersion (카본 블렉을 함유한 유리섬유 직조 복합재 적층판의 유전율)

  • 김진봉;정재한;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.56-59
    • /
    • 2002
  • This paper presents a study on the permittivities of the E-glass fabric/epoxy composite laminates containing carbon black dispersions at microwave frequency. Measurement showed that the complex permittivities of the composites depend strongly on the natures and concentrations of the carbon black dispersion. A new scheme to obtain a mixing law for the estimation of complex permittivity is proposed. The experimental values of the complex permittivities were compared to those calculated. Simultaneously, the complex permittivity of carbon black itself was also calculated by the scheme.

  • PDF

Permittivities of the Carbon Nano Fiber/Epoxy Composite According to the Dispersion Methods (분산 방법에 따른 카본 나노 섬유/에폭시 복합재료의 유전율)

  • 김태욱;김진봉;공진우;정재한;김준현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.55-58
    • /
    • 2003
  • This paper presents a study on the permittivities of the carbon nano fiber/epoxy composite at microwave frequency. The permittivities of composite materials depend on the concentrations and the dispersion methods of the carbon nano fibers. The experimental values of complex permittivities were obtained for the specimen made by dispersion method using ethyl alcohol as dispersion media and compared with the results by simple mechanical mixing method.

  • PDF

Permittivities of the E-Glass Fabric/Epoxy Composite Laminates Containing Carbon Black Dispersion (카본 블렉을 함유한 복합재 적층판의 유전율)

  • 김진봉;김태욱
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.48-53
    • /
    • 2003
  • This paper presents a study on the permittivities of the I-glass fabric/epoxy composite laminates containing carbon black dispersions at microwave frequency. Measurements were performed at the frequency band of 5 GHz∼18 GHz. The results showed that the complex permittivities of the composites depend strongly on the natures and concentrations of the carbon black dispersion. A new scheme is proposed to obtain a mixing law for the estimation of the complex permittivities of the composite laminates as a function of concentration of carbon black. Simultaneously, the complex permittivity of carbon black itself was also calculated by the scheme. The experimental values of the complex permittivities of the composites were compared to those calculated.

Temperature Compensation of Complex Permittivities of Biological Tissues and Organs in Quasi-Millimeter-Wave and Millimeter-Wave Bands

  • Sakai, Taiji;Wake, Kanako;Watanabe, Soichi;Hashimoto, Osamu
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.231-236
    • /
    • 2010
  • This study proposes a temperature compensation method of the complex permittivities of biological tissues and organs. The method is based on the temperature dependence of the Debye model of water, which has been thoroughly investigated. This method was applied to measured data at room temperature for whole blood, kidney cortex, bile, liver, and heart muscle. It is shown that our method can compensate for the Cole-Cole model using measured data at 20 $^{\circ}C$, given the Cole-Cole model based on measured data at 35 $^{\circ}C$, with a root-mean-squared deviation of 3~11 % and 2~6 % for the real and imaginary parts of the complex permittivities, respectively, among the measured tissues.

Permittivity of Solid State Electron Plasma Including the Effect of Diffusion (고상전자 프라즈마의 유도율과 확산현상과의 관계)

  • Cho, Chul
    • 전기의세계
    • /
    • v.20 no.6
    • /
    • pp.19-21
    • /
    • 1971
  • Permittivities are closely related to lattice vibrations and dispersions relations, and this paper deals with the tensor permittivities which include the effect of diffusion. It is a great convenience in the consideration of plasma waves to treat the plasma as a dielectric medium with its circumference. And, on the assumption that the motion of the ionized donors be neglected the general expression from which the tensor permittivity can be derived is derived from the view point that the plasma can be treated as a hydrodynamical fluid. The effect of diffusion appears as perturbation terms in the tensor permittivities of the non-streaming solid state electron magnetoplasmas and affects no influence on the anisotropic terms in the specific configuration.

  • PDF

Fabrication and Electromagnetic Characteristics of Multi-walled Carbon nanotube/Epoxy Composites (다중벽 나노튜브/에폭시 복합재의 제작과 전자기적 특성)

  • 이상의;박기연;이원준;김천곤;한재흥
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.107-110
    • /
    • 2003
  • The electromagnetic intereference(EMI) shielding is very essential for commercial and military purposes. We fabricated multi-walled carbon nanoube(MWNT)/epoxy composites and studied the electromagnetic characteristics of the composites before we study the characteristics of MWNT-filled glass fiber-reinforced composites. After setting up the fabrication process, we measured the permittivities of MWNT/epoxy composites with process variables and MWNT concentrations in X-band(8.2GHz- 12.4GHz). Process variables changed the degree of dispersion, which influenced permittivities and permittivities increased rapidly from 0.5wt% to 1.0wt%.

  • PDF

Simulation of Complex Permittivity of Carbon Black/Epoxy Composites at Microwave Frequency Band (마이크로파에서의 카본 블랙/에폭시 복합재료의 유전율 모사)

  • Kim J.B.;Kim T.W.;Kim C.G.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.155-160
    • /
    • 2004
  • This paper presents a study on the permittivities of the carbon black/epoxy composite at microwave frequency. The measurements were performed at the frequency band of $1 GHz\~18GHz$. The results show that the complex permittivities of composites depend strongly on the natures and concentrations of the carbon black dispersion. The frequency spectrums of dielectric constants and ac conductivities of composites show the good conformities with descriptions of the percolation theory. The carbon black concentration dependencies do not have conformities with the descriptions of percolation theory and there is no peculiar concentration like percolation threshold, on that concentration, the conductivity of composite jumps up. A new scheme, that is a branch of Lichtenecker-Rother formula, is proposed to obtain a mixing law to describe the complex permittivities of the composites as function frequency and concentration of carbon black.

  • PDF

Comparison of the Measured Electrical Properties of Pig Internal Organs with the Given Values for Human Organs

  • Jung, Ji-Hyun;Kim, Se-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.161-165
    • /
    • 2012
  • The electrical properties of pig internal organs including lung, liver, heart, kidney, blood, stomach, and small intestine are measured using an open-ended coaxial probe and an improved virtual transmission-line model. The measured complex permittivities of the pig organs are compared with the given values of the corresponding human organs. A similarity between these values is confirmed. For organs such as lung, liver, heart, and kidney that have regular texture and contents, the complex permittivities are almost identical to those of the corresponding human organs. The complex permittivities of human and pig blood are also very close in value. However, relatively large deviations are observed for the cases of stomach and small intestine because the internal contents of these organs significantly affect the measured electrical properties.

A Study on the Simulation of Complex Permittivities of Carbon Black/Epoxy Composites at a High Frequency Band (고주파에서의 카본 블랙/에폭시 복합재료 복소유전율 모사에 대한 연구)

  • Kim Tae-Wook;Kim Chun-Gon;Kim Jin-Bong
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.14-20
    • /
    • 2005
  • This paper presents a study on the permittivities of the carbon black/epoxy composite at microwave frequency. The measurements were performed at the frequency band of $1\;GHz\~18\;GHz$. The experimental data show that the complex permittivities of composites depend strongly on the natures and concentrations of the carbon black dispersion. The frequency characteristics of dielectric constants and ac conductivities of composites show the good conformity with descriptions of the percolation theory, satisfying the general scaling relation. The measuring frequency band is over the critical frequency, below that the ac conductivities of composites are constant to the frequency. The values of dielectric constants and ac conductivities have consistent relationships with the carbon black concentration. The A new scheme, that is a branch of Lichtenecker-Rother formula, is proposed to obtain a mixing law to describe the complex permittivities of the composites as function frequency and concentration of carbon black.

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.