• Title/Summary/Keyword: Permanent GPS Site

Search Result 16, Processing Time 0.021 seconds

Utilization of Permanent Site Data for Accuracy Improvement in GPS Surveying - At the Subset Area of Jinan-Gun - (GPS 측량의 정확도 향상을 위한 상시관측 데이터의 활용 - 진안군 일부 지역에 있어서 -)

  • 김상철;안기원;이효성;신석효
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.61-64
    • /
    • 2003
  • This study attempts to analyze both the mis-closures between triangulation points of 3 and 4 glade and permanent sites data, and accuracy of according as change the number of utilized GPS permanent sites and base lines for improvement of the accuracy in GPS surveying using permanent sites data. The result of this study show that the mis-closure between the two points and Jeonju/Chungju/Sangju/Daegu stations of NGI(National Geography Institute) are 0.0051 m, 0.0361 m, 0.0039 m and 0.0198 m respectively. It indicated that the mis-closures were less than the allowed values in the primary/secondary control point specification for GPS surveying, a mis-closure less than 30 mm for the distance less than 30 km and a mis-closure less than 1 PPM${\times}$D(km) for the distance greater than 30 km. Jinan 11 of actual surveying point for the base line 21.4911 km in Jeonju permanent site and 87.8156 km in Sangju permanent site, northing and easting for planimetric errors of Jinan 11 are 0.0120 m and 0.0113 m, northing and easting for planimetric errors of Jinan 12 are 0.0122 m and 0.0115 m.

  • PDF

EVALUATION OF DATA QUALITY OF PERMANENT GPS STATIONS IN SOUTH KOREA

  • Park, Kwan-Dong;Kim, Ki-Nam;Lim, Hyung-Chul;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.4
    • /
    • pp.367-376
    • /
    • 2002
  • As of September 2002, there are more than 60 operational permanent Global Positioning System (GPS) stations in South Korea. Their data are being used for a variety of purposes: geodynamics, geodesy, real-time navigation, atmospheric science, and geography. Especially, many of the sites are reference stations for DGPS (Differential GPS). However, there has been no comprehensive and qualitative analysis published to evaluate the data quality. In this study, we present preliminary results of our assessment of the permanent GPS sites in South Korea. We have analyzed the multi-path characteristics of each station using a quality-checking software package called TEQC. Another multipath analysis tool based on post-fit phase residuals was used to check the repeating patterns and the amount of the multipath at each site. The long-term stability of each station was analyzed using the root-mean-square (RMS) error of the estimated site positions for one year, which enabled us to evaluate the mount stability. In addition, the number of cycle slips at each site was derived by TEQC. Based on these series of tests, we compared the stability and data quality of permanent GPS stations in South Korea.

Analysis of Site Environment at Permanent GPS Stations Operated by National Geographic Information Institute (국토지리정보원 GPS 상시관측소 관측환경 분석)

  • Park, Kwan-Dong;Kim, Hye-In;Won, Ji-Hye
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.337-345
    • /
    • 2007
  • National Geographic Information Institute has installed the first permanent Global Positioning System (GPS) station SUWN in 1995 and, as of today, the number of sites is 14. In this study, we visited all the 14 stations and determined if the site mount and antenna configuration conforms to the international site guidelines published by International GNSS Service and National Geodetic Survey. The environment around each station was also checked for the possibility of causing positioning errors. In addition, the GPS data quality was evaluated using the quality-checking program called TEQC. As a result of site visits, we found that low stations (TABK, CHJU, KWNJ, and WNJU) have unfavorable environment and TEQC results validated it. TEQC results also showed that the GPS receiver change during years 2005-2006 reduced the multipath errors and the number of cycle slips at every station.

Stability Evaluation of Permanent GPS Site by Least Square Spectrum Analysis (최소자승 스펙트럼분석을 통한 GPS상시관측소의 안정성 평가)

  • 윤홍식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.379-385
    • /
    • 2000
  • In order to evaluate the stability of permanent GPS arrays for obtaining high precision coordinates, spectral analysis uses the least square spectrum analysis to the coordinate variations of Suwon, Tsukuba and Sanghai stations. Permanent GPS observations at Suwon, Tsukuba and Sanghai have been more or less continuously carried out since 1994. Time series of the resulting coordinate variations are analyzed for long term repeatability and periodic behaviour.

  • PDF

Analysis of GPS-derived Total Zenith Delay Estimates for Climate Studies in the Korean Peninsula

  • Park Kwan-Dong;Ha Jihyun
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.703-706
    • /
    • 2004
  • Tropospheric parameters, in the form of Total Zenith Delay (TZD) corrections, were estimated with the current GPS network of Korea. We estimated the TZD using the Korea Astronomy Observatory GPS Network of nine permanent stations. About four years of data were processed to get the continuous time series of the TZD. The longest time series is obtained from the site DAEJ, which has been in operation for about 10 years. We analyzed the seasonal and annual signals in the TZD estimates at DAEJ and spatial correlations among eight sites.

  • PDF

Determination of Absolute Coordinates of Permanent GPS Site (GPS 상시관측소의 절대좌표 산정에 관한 연구)

  • 윤홍식;황진상
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.415-423
    • /
    • 2001
  • This paper deals with the data processing method relative to reference frames through the calculation of absolute coordinates of permanent GPS site which was established at Sungkyunkwan University. In this paper. we computed the ITRF97 coordinates with high precision (0.0001 ppm) from GPS data analysis. Also, we derived the accurate coordinates referred to WGS84 and Korean Geodetic Datum (KGD) using transformation parameters provided. ITRF97 coordinates were computed by using the GIPSY-OASIS II (GOA II) software and the algorithms for determining the position developed Jet Propulsion Laboratory (JPL). The coordinates referred to WGS84 and KGD were derived from the transformation parameters provided by International Earth Rotation Service (IERS) and National Geography Institute (NGI). The parameters determined by NGI were calculated from the 2000 project of the establishment of geocentric coordinate system. We tested its availability through the comparison of the coordinates obtained from local GPS data analysis.

  • PDF

Accuracy Analysis of Online GPS Data Processing Service (온라인 GPS 자료처리 서비스의 정확도분석)

  • Kong, Joon-Mook;Park, Joon-Kyu;Lee, Choi-Gu;Lee, Young-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Currently, GPS data process software appears different results that according to user's skills or software. Also, lots of time and efforts are necessary for using GPS data process software to general user, not a specialist On the other band, on-line GPS data process service have a merit that can cony out GPS data process without technical efforts and time. In this study, permanent GPS site's observation data of NGII(National Geographic Information Institute) was processed by on-line GPS data process service, and utilization assessment of on-line GPS data process service was performed by comparing this result with notified coordinates by the NGII in order to analyze positional accuracy. 10 permanent GPS sites of NGII including Suwon which is registered in IGS(International GNSS Service) were selected and these GPS observation data was processed by AUSPOS and CSRS-PPP.

Precision Evaluation of GPS PWV and Production of GPS PWV Tomograph during Foul Weather (악천후시 GPS PWV의 측정 정밀도 검증 및 GPS PWV 변화도 작성)

  • 윤홍식;송동섭
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.69-74
    • /
    • 2003
  • GPS/Meteorology technique for PWV monitoring is currently actively being researched an advanced nation. But, there is no detailed research on an evaluation of precision of GPS derived PWV measurements during the period of foul weather condition. Here, we deal with the precision of GPS derived PWV during the passage of Typhoon RUSA. Typhoon RUSA which caused a series damage was passed over in Korea from August 30 to September 1, 2002. We compared th tropospheric wet delay estimated from GPS observation and radio-sonde data at four sites(Suwon, Kwangju, Taegu, Cheju). The mean standard deviation of PWV differences at each site is ${\pm}$0.005mm. We also obtained GPS PWV at 13 GPS permanent stations(Seoul, Wonju, Seosan, Sangju, Junju, Cheongju, Taegu, Wuljin, Jinju, Daejeon, Mokpo, Sokcho, Jeju). GPS PWV time series shows, in general, peak value before and during th passage of RUSA, and low after the RUSA. GPS PWV peak time at each station is related to the progress of a typhoon RUSA. We obtained very similar result as we compare GMS satellite image with tomograph using GPS PWV and we could present th possibility of practical use by numerical model for weather forecast.

  • PDF

Correction of Coordinate Discontinuities Caused by GPS Antenna Replacements

  • Kim, Dusik;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.131-140
    • /
    • 2015
  • Antennas at permanent GPS stations operated by the former Ministry of Government Administration and Home Affairs (MOGAHA) in Korea were replaced in years 2008 and 2009, and these changes caused abrupt discontinuities in precise coordinate time series. In this study, an algorithm that eliminates those breaks was developed based on 15-year-long coordinate time series for the purpose of creating clean and continuous coordinate time series. The newly developed algorithm to correct for sudden jumps and dips in the GPS time series due to the antenna change was designed to consider all the linear and annual signals observed before and after the event. The accuracy of the new algorithm was confirmed to be at the Root Mean Square Error (RMSE) level of 2.3-2.6 mm. The new algorithm was also found to be capable of reflect site-specific characteristics at each station.

GPS water vapor estimation modeling with high accuracy by consideration of seasonal characteristics on Korea (한국의 계절별 특성을 고려한 고정확도 GPS 수증기 추정 모델링)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.565-574
    • /
    • 2009
  • The water vapor weighted vertically mean temperature(Tm) models, which were developed by the consideration of seasonal characteristics over the Korea, was used in the retrieval of precipitable water vapor (PWV) from GPS data which were observed at four GPS permanent stations. Since the weighted mean temperature relates to the water vapor pressure and temperature profile at a site, the accuracy of water vapor information which were estimated from GPS tropospheric wet delay is proportional to the accuracy of the weighted mean temperature. The adaption of Korean seasonal weighted mean temperature model, as an alternative to other formulae which are suggested from other nation, provides an improvement in the accuracy of the GPS PWV estimation. Therefore, it can be concluded that the seasonally appropriate weighted mean temperature model, which is used to convert actual zenith wet delay (ZWD) to the PWV, can be more reduced the relative biases of PWV estimated from GPS signal delays in the troposphere than other annual model, so that it would be useful for GPS PWV estimation with high accuracy.