• Title/Summary/Keyword: Peri-implantation

Search Result 69, Processing Time 0.033 seconds

The EST Study of the Peri-implanting Porcine Embryos (Peri-implanting 단계의 돼지배아 EST 연구)

  • Kwak, In-Seok
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.587-592
    • /
    • 2009
  • A dramatic morphological change of embryos occurs at peri-implantation. Maternal and embryonic cross-talk during this period, initiated by signals from embryo(s), provides signals for maternal recognition of pregnancy and establishing and maintaining the pregnancy. However, the cellular, biochemical and genetic processes that direct embryo remodeling in mammalian species are not well studied or understood. In order to identify potential genes responsible for morphological change and cross-talk between embryo and uterus, an initial EST analysis was performed. A catalog of expressed genes (Transcriptome) from the d12 peri-implanting porcine embryos was constructed. Six clones were chosen from the initial ESTs for elucidation of their expression patterns during embryogenesis in early pregnancy. A number of these genes demonstrated unique expression profiles in a tissue, cell-type, and temporal fashion, indicating dynamic regulation of embryonic and endometrial gene expressions at different stages of pregnancy. Cross-talk between the embryo and endometrium of the pregnant uterus has provided a suitable micro-environment for the embryo's rapid and dramatic morphological changing process at the peri-implantation stage.

Correlation of Oct4 and FGF4 Gene Expression on Peri-implantation Bovine Embryos Reconstructed with Somatic Cell

  • K. S. Chung;Yoon, B. S;S. J. Song;Park, Y. J.;S. B. Hong;Lee, H. T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.329-338
    • /
    • 2002
  • This study was carried out to investigate the developmental rates of embryo reconstructed with different cell type and to estimate correlation of transcriptional level of octamer-binding transcription factor 4 (Oct4) and fibroblast growth factor 4 (FCF4) gene on peri-implantation stage embryos. Donor cells were transferred into perivitelline space of enucleated oocytes. The karyoplast-cytoplast couplets were accom- plished by cell to cell fusion and activated with ionomycin and 6-dimethylaminopurine. Reconstructed embryos were co-cultured with bovine oviduct epithelial cells in CR 1 aa medium. There is no difference in blastocyst formation rate following nuclear transfer UT) with fetal fibroblast cell (16/50; 32.0%), cumulus cell (16/49; 32.6%) and ear cell (17/52; 32.6%). The expression level of Oct4 and FCF4 in peri-implantation bovine embryo derived from in vitro fertilization (IVF) and NT were determined by reverse-transcription polymerase chain reaction (RT-PCR) technique. In peri-implantation of IVF result in a transient increased of FCF4 paralleled by an increased expression of Oct4. However, Oct4 gene was highly expressed in hatching blastocysts derived from NT compared to IVF. Also, FGF4 expression level in hatching blastocysts and outgrowth stage derived from NT was lower than that of IVF. In conclusion, it is suggested that the different transcription patterns observed in nuclear transfer embryos may lead to a lower rate of embryo development, implantation and pregnancy.

EGF, IGF-I, VEGF and CSF2: Effects on Trophectoderm of Porcine Conceptus

  • Jeong, Wooyoung;Song, Gwonhwa
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.21-34
    • /
    • 2014
  • The majority of early embryonic mortality in pregnancy occurs during the peri-implantation stage, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period. This maternal-conceptus interaction is especially crucial in pigs because in them non-invasive epitheliochorial placentation occurs, in which the pre-implantation phase is prolonged. During the pre-implantation period, conceptus survival and the establishment of pregnancy are known to depend on the developing conceptus receiving an adequate supply of histotroph, which contains a wide range of nutrients and growth factors. Evidence links growth factors including epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), vascular endothelial growth factor (VEGF), and colony-stimulating factor 2 (CSF2) to embryogenesis or implantation in various mammalian species; however, in the case of pig, little is known about such functions of these growth factors, especially their regulatory mechanisms at the maternal-conceptus interface. Our research group has presented evidence for promising growth factors affecting cellular activities of primary porcine trophectoderm (pTr) cells, and we have identified potential intracellular signaling pathways responsible for the activities induced by these factors. Therefore, this review focuses on promising growth factors at the maternal-conceptus interface regulating the development of the porcine conceptus and playing pivotal roles in implantation events during early pregnancy in pigs.

Imprinted Gene mRNA Expression during Porcine Peri-implantation Development

  • Cha, Byung-Hyun;Kim, Bong-Ki;Hwang, Seongsoo;Yang, Byoung-Chul;Im, Gi-Sun;Park, Mi-Rung;Woo, Jae-Seok;Kim, Myung-Jick;Seong, Hwan-Hoo;Cho, Jae-Hyeon;Ko, Yeoung-Gyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.693-699
    • /
    • 2010
  • Imprinted genes are essential for fetal development, growth regulation, and postnatal behavior. However, little is known about imprinted genes in livestock. We hypothesized that certain putatively imprinted genes affected normal peri-implantation development such as embryo elongation, initial placental development, and preparation of implantation. The objective of the present study was to investigate the mRNA expression patterns of several putatively imprinted genes during the porcine peri-implantation stages from day 6 to day 21 of gestation. Imprinted genes were selected both maternally (Dlk1, IGF2, Ndn, and Sgce) and paternally (IGF2r, H19, Gnas and Xist). Here, we report that the maternally imprinted gene IGF2 was expressed from day 6 (Blastocyst stage), but Dlk1, Ndn, and Sgce were not expressed in this stage. These genes were first expressed between days 12 and day 14. All the maternally imprinted genes studied showed significantly high expression patterns from day 18 of embryo development. In contrast, paternally imprinted genes IGF2r, H19, Gnas, and Xist were first expressed from day 6 of embryo development (BL). Our data demonstrated that the expression of H19 and Gnas genes was significantly increased from day 14 of the embryo developmental stage, while IGF2r and Xist only showed high expression after day 21. This study is the first to show that the putatively imprinted genes were stage-specific during porcine embryonic development. These results demonstrate that the genes studied may exert important effects on embryo implantation and fetal development.

GH Increases the Progesterone at Peri-estrus Stage in Mice Co-injected with PMSG for Superovulation

  • Kim, Young-Gee;Ryoo, Zae-Young;Park, Young-Sik
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.519-525
    • /
    • 2011
  • Growth hormone (GH) is obligatory for growth and development. But, there is controversy on the GH effect about reproductive processes of sexual differentiation, pubertal maturation, gonadal steroidogenesis, gametogenesis and ovulation. This study was conducted to investigate the effect of GH on estrus, ovulation and embryo implantation. The results obtained were as follows. GH stimulated to increase estrus rate (p<0.05), pregnancy rate (p<0.05), and total fetus number in mice treated for superovulation. Also, the correlation between GH and steroids, E2 and P4, at peri-estrus stage/ peri-ovulation stage/ peri-implantation stage of the superovulation-induced mice was examined. Consequently, GH co-injected with PMSG especially increased P4 level (p<0.05) at peri-estrus stage of superovulationinduced mice. In conclusion, GH co-treatment in superovulation system boosted the rate of estrus, pregnancy and total fetus by increasing progesterone level at peri-estrus stage of superovulation-induced mice.

Effects of dynamic oxygen concentrations on the development of mouse pre- and peri-implantation embryos using a double-channel gas supply incubator system

  • Lee, Seung-Chan;Seo, Ho-Chul;Lee, Jaewang;Jun, Jin Hyun;Choi, Kyoo Wan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.4
    • /
    • pp.189-196
    • /
    • 2019
  • Objective: We aimed to evaluate the effects of different oxygen conditions (20% [high O2], 5% [low O2] and 5% decreased to 2% [dynamic O2]) on mouse pre- and peri-implantation development using a novel double-channel gas supply (DCGS) incubator (CNC Biotech Inc.) to alter the oxygen concentration during in vitro culture. Methods: The high-O2 and low-O2 groups were cultured from the one-cell to the blastocyst stage under 20% and 5% oxygen concentrations, respectively. In the dynamic-O2 group, mouse embryos were cultured from the one-cell to the morula stage under 5% O2 for 3 days, followed by culture under 2% O2 to the blastocyst stage. To evaluate peri-implantation development, the blastocysts from the three groups were individually transferred to a fibronectin-coated dish and cultured to the outgrowth stage in droplets. Results: The blastocyst formation rate was significantly higher in the low-O2 and dynamic-O2 groups than in the high-O2 group. The total cell number was significantly higher in the dynamic-O2 group than in the low-O2 and high-O2 groups. Additionally, the apoptotic index was significantly lower in the low-O2 and dynamic-O2 groups than in the high-O2 group. The trophoblast outgrowth rate and spread area were significantly higher in the low-O2 and dynamic-O2 groups than in the high-O2 group. Conclusion: Our results showed that a dynamic oxygen concentration (decreasing from 5% to 2%) had beneficial effects on mouse pre- and peri-implantation development. Optimized, dynamic changing of oxygen concentrations using the novel DCGS incubator could improve the developmental competence of in vitro cultured embryos in a human in vitro fertilization and embryo transfer program.

Interferon Tau in the Ovine Uterus

  • Song, Gwon-Hwa;Han, Jae-Yong;Spencer, Thomas E.;Bazer, Fuller W.
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.471-484
    • /
    • 2009
  • The peri-implantation period in mammals is critical with respect to survival of the conceptus (embryo/fetus and associated extraembryonic membranes) and establishment of pregnancy. During this period of pregnancy, reciprocal communication between ovary, conceptus, and endometrium is required for successful implantation and placentation. At this time, interferon tau (IFNT) is synthesized and secreted by the mononuclear trophectodermal cells of the conceptus between days 10 and 21~25. The actions of IFNT to signal pregnancy recognition and induce or increase expression of IFNT-stimulated genes (ISGs), such as ISG15 and OAS, are mediated by the Type I IFN signal transduction pathway. This article reviews the history, signaling pathways of IFNT and the uterine expression of several IFNT-stimulated genes during the peri-implantation period. Collectively, these newly identified genes are believed to be critical to unraveling the mechanism(s) of reciprocal fetal-maternal interactions required for successful implantation and pregnancy.

Expression of Placenta-Related Genes (Cdx2 and GATA6) in Cloned Porcine Development

  • Cha, Byung-Hyun;Hwang, Seong-Soo;Lee, Hwi-Cheul;Park, Mi-Rung;Im, Gi-Sun;Woo, Jae-Seok;Park, Soo-Bong;Cho, Jae-Hyeon;Ko, Yeoung-Gyu
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.195-202
    • /
    • 2009
  • Abnormal development and fetal loss during the post-implantation period are key concerns in the production of cloned animals by somatic cell nuclear transfer (SCNT). We hypothesized that the problems in cloned porcine offspring derived from SCNT are related to interactions between the conceptus and the endometrial environment. In the present study, we investigated expression patterns in the formation of placenta-related genes (Cdx2 and GATA6) in whole in vivo normal porcine embryos (from single cell to blastocyst) and each tissue of a normal fetus at Days 25, 35 and 55 by quantitative mRNA expression analysis using real-time PCR. The expression of Cdx2 and GATA6 mRNA increased to around the blastocyst stage. These genes were gradually decreased from the peri-implantation to post-implantation stage. Moreover, we examined the expression patterns of Cdx2 and GATA6 in Day 35 normal and SCNT cloned fetuses by the same methods. And, the level of Cdx2 and GATA6 gene expression in the extraembryonic tissue of SCNT was significantly higher than that of control tissues. From the present results, it can be postulated that the aberrant expression of Cdx2 and GATA6 genes in the endometrial and extraembryonic tissues at pre- and peri-implantation stages may be closely related to the lower efficiency of animal cloning.

Correlation of Oct-4 and FGF-4 Gene Expression on Peri-Implantation Bovine Embryos Reconstructed with Various Somatic Cells

  • Yoon, Byung-Sun;Song, Sang-Jin;Do, Jeong-Tae;Hong, Seung-Bum;Lee, Hoon-Taek;Chung, Kil-Saeng
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.66-66
    • /
    • 2002
  • The efficiency of animal production using cloning technology is relatively low. It is considered that the nuclear transferred (NT) embryos proceed inappropriate reconstruction with donor-recipient cell, which lead to a abnormal embryo development, and differential expression of mRNA transcript. Especially, the expression of mRNA on peri-implantation stage embryos is very important factor to decide success of implantation and ongoing pregnancy. (omitted)

  • PDF

Roles of Conceptus Secretory Proteins in Establishment and Maintenance of Pregnancy in Ruminants

  • Bazer, Fuller W.;Song, Gwon-Hwa;Thatcher, William W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2012
  • Reproduction in ruminant species is a highly complex biological process requiring a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling and regulation of gene expression by uterine epithelial and stromal cells. The uterus provide a microenvironment in which molecules secreted by uterine epithelia and transported into the uterine lumen represent histotroph, also known as the secretome, that are required for growth and development of the conceptus and receptivity of the uterus to implantation by the elongating conceptus. Pregnancy recognition signaling as related to sustaining the functional lifespan of the corpora lutea, is required to sustain the functional life-span of corpora lutea for production of progesterone which is essential for uterine functions supportive of implantation and placentation required for successful outcomes of pregnancy. It is within the peri-implantation period that most embryonic deaths occur in ruminants due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. The endocrine status of the pregnant ruminant and her nutritional status are critical for successful establishment and maintenance of pregnancy. The challenge is to understand the complexity of key mechanisms that are characteristic of successful reproduction in humans and animals and to use that knowledge to enhance fertility and reproductive health of ruminant species in livestock enterprises.