Correlation of Oct4 and FGF4 Gene Expression on Peri-implantation Bovine Embryos Reconstructed with Somatic Cell

  • K. S. Chung (Animal Resources Research Center, Konkuk Univ, Seoul) ;
  • Yoon, B. S (Animal Resources Research Center, Konkuk University) ;
  • S. J. Song (Animal Resources Research Center, Konkuk University) ;
  • Park, Y. J. (Animal Resources Research Center, Konkuk University) ;
  • S. B. Hong (Animal Resources Research Center, Konkuk University) ;
  • Lee, H. T. (Animal Resources Research Center, Konkuk University)
  • Published : 2002.12.01

Abstract

This study was carried out to investigate the developmental rates of embryo reconstructed with different cell type and to estimate correlation of transcriptional level of octamer-binding transcription factor 4 (Oct4) and fibroblast growth factor 4 (FCF4) gene on peri-implantation stage embryos. Donor cells were transferred into perivitelline space of enucleated oocytes. The karyoplast-cytoplast couplets were accom- plished by cell to cell fusion and activated with ionomycin and 6-dimethylaminopurine. Reconstructed embryos were co-cultured with bovine oviduct epithelial cells in CR 1 aa medium. There is no difference in blastocyst formation rate following nuclear transfer UT) with fetal fibroblast cell (16/50; 32.0%), cumulus cell (16/49; 32.6%) and ear cell (17/52; 32.6%). The expression level of Oct4 and FCF4 in peri-implantation bovine embryo derived from in vitro fertilization (IVF) and NT were determined by reverse-transcription polymerase chain reaction (RT-PCR) technique. In peri-implantation of IVF result in a transient increased of FCF4 paralleled by an increased expression of Oct4. However, Oct4 gene was highly expressed in hatching blastocysts derived from NT compared to IVF. Also, FGF4 expression level in hatching blastocysts and outgrowth stage derived from NT was lower than that of IVF. In conclusion, it is suggested that the different transcription patterns observed in nuclear transfer embryos may lead to a lower rate of embryo development, implantation and pregnancy.

Keywords

References

  1. Ambrosetti, D. C., Basilico, C. and Dailey, L. 1997. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol. Cell. BioI., 17:6321-6329
  2. Botquin, V., Hess, H., Fuhrmann, G., Anastassiadis, C., Gross, M. K., Vriend, G. and Scholer, H. R. 1998. New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct4 and Sox2. Genes Dev., 12:2073-2090 https://doi.org/10.1101/gad.12.13.2073
  3. Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C; Ponce de Leon F. A. and Robl, J. M. 1998. Cloned transgenic calves produced form nonquiescent fetal fibroblasts. Science, 280: 1256-1258 https://doi.org/10.1126/science.280.5367.1256
  4. Curatola, A. M. and Basilico, D. 1990. Expression of the k-FGF proto-oncogene is controlled by 3' regulatory elements which are specific for embryonal carcinoma cells. Mol. Cell. BioI., 10: 2475-2489
  5. Dailey, L., Yuan, H. and Basilico, C. 1994. Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell type restricted activity of the fibroblast growth factor 4 enhancer. Mol. Cell. BioI., 14:7758-7769
  6. Daniels, R., Hall, V. J. and Trounson, A. O. 2000. Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei. BioI. Reprod., 63: 1034-1040 https://doi.org/10.1095/biolreprod63.4.1034
  7. Daniels, R., Hall, V. J., French, A. J., Korfiatis, N. A. and Trounson, A. O. 2001. Comparison of gene transcription in cloned bovine embryos produced by different nuclear transfer techniques. Mol. Reprod. Dev., 60:281-288 https://doi.org/10.1002/mrd.1089
  8. Du, Z., Cong, H. and Yao, Z. 2001. Identification of putative downstream genes of Oct -4 by suppression-subtractive hybridization. Biochem. Biophys. Res. Commun., 282:701-706 https://doi.org/10.1006/bbrc.2001.4636
  9. Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M. and Goldfarb, M. 1995. Requirement of FGF4 for postimplantation mouse development. Science, 267:246-249 https://doi.org/10.1126/science.7809630
  10. Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K., Kato, J. Y., Doguchi, H., Yasue, H. and Tsunoda, Y. 1998. Eight calves cloned from somatic cells of a single adult. Science, 282: 2095-2098
  11. Koo, D. B., Kang, Y. K., Choi, Y. H., Park, J. S., Kim, H. N., Kim, T., Lee, K. K. and Han, Y. M. 2001. Developmental potential and transgenic expression of porcine nuclear transfer embryos using somatic cells. Mol. Reprod. Dev., 58:15-21 https://doi.org/10.1002/1098-2795(200101)58:1<15::AID-MRD3>3.0.CO;2-Y
  12. Ma, Y. G., Rosfjord, E., Huebert, c. Wilder, P., Tiesman, J., Kelly, D. and Rizzino, A. 1992. Transcriptional regulation of the murine k-FGF gene in embryonic cell lines. Dev. BioI., 154:45-54
  13. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, J., Scholer, H. and Smith, A. 1998. Formation of pluripotent stem cells in the mammalian embryo depends in the POU transcription factor Oct4. Cell, 95:379-391 https://doi.org/10.1016/S0092-8674(00)81769-9
  14. Niswander, L. and Martin, G. R. 1992. FGF4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development, 114:775-769
  15. Niwa, H., Miyazaki, J. and Smith, A. G. 2000. Quantitative expression of Oct3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet., 24:372-376 https://doi.org/10.1038/74199
  16. Ovitt, C. E. and Scholer, H. R. 1998. The molecular biology of Oct4 in the early mouse embryo. Mol. Hum. Reprod., 4:1021-1031 https://doi.org/10.1093/molehr/4.11.1021
  17. Parrish, J. J., Susko-Parrish, J. L. and First, N. L. 1985. Effect of heparin and chondroitin sulfate on the acrosome reaction and fertility of bovine sperm in vitro. Theriogenology, 24:537-549 https://doi.org/10.1016/0093-691X(85)90060-3
  18. Pesce, M. and Scholer, H. R. 2001. Oct4: Gatekeeper in the beginnings of mammalian development. Stem Cells, 19:271-278
  19. Rosenkrans, C. F., Zeng, G. Q., McNamara, G. T., Scfoff, O. K. and First, N. L. 1993. Development of bovine embryos in vitro as affected by energy substrates. BioI. Repord., 49:459- 462 https://doi.org/10.1095/biolreprod49.3.459
  20. Rosner, M. H., Vigano, M. A., Ozato, K., Timmons, P. M., Poirier, F., Rigby, P. W. J and Staudt, L. M. 1990. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature, 345:686-692 https://doi.org/10.1038/345686a0
  21. Van Stekelenburg-Hamers, A. E., Revel, H. G., van !nzen, W. G., de Loos, F. A., Drost, M., Mummery, C. L., Weima, S. M. and Trounson, A. O. 1994. Stage-specific appearance of the mouse antigen TEC-3 in normal and nuclear transfer bovine embryos: Re-expression after nuclear transfer. Mol. Reprod. Dev., 37:27-33 https://doi.org/10.1002/mrd.1080370105
  22. Wakayama, T., Perry, A. C. F., Zuccotti, M., Johnson, K. R. and Yanagimachi, R. 1998. Full -term development of mice from enucleated oo-cytes injected with cumulus cell nuclei. Nature, 394:369-374 https://doi.org/10.1038/28615
  23. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. and Campbell, K. H. S. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature, 385:810-813 https://doi.org/10.1038/385810a0
  24. Yuan, H., Corbi, N., Basilico, C. and Dailiy, L. 1996. Developmental-specific activity of the FGF 4 enhancer requires the synergistic action of Sox2 and Oct3. Genes Dev., 9:2635-2645 (Received Septemvber 10, 2002; Accepted November 10. 2002)