• Title/Summary/Keyword: Perfused adrenal gland

Search Result 66, Processing Time 0.026 seconds

GREEN TEA EXTRACT INHIBITS CATECHOLAMINE RELEASE IN THE PERFUSED RAT ADRENAL GLAND

  • Lim, Dong-Yoom;Shin, Hye-Gyeong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.255.2-255.2
    • /
    • 2002
  • The present study was designed to investigate the effects of green tea extract (GTE) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rat adrenal gland. In the presence of GTE (100 ${\mu}$g/$m\ell$) into an adrenal vein for 60 min. CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM) and Bay-K-8644 (10 ${\mu}$M for 4 min) from the isolated perfused rat adrenal glands were greatly inhibited in a time-dependent fashion. (omitted)

  • PDF

Influence of Tacrine on Catecholamine Secretion in the Perfused Rat Adrenal Gland

  • Jang, Seok-Jeong;Yang, Won-Ho;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.207-214
    • /
    • 2002
  • The present study was designed to clarify whether tacrine affects the release of catecholamines (CA) from the isolated perfused model of rat adrenal gland or not and to elucidate the mechanism of its action. Tacrine $(3{\times}10^{-5}{\sim}3{\times}10^{-4}\;M)$ perfused into an adrenal vein for 60 min inhibited CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP (a selective neuronal nicotinic agonist, $10^{-4}$ M for 2 min) and McN-A-343 (a selective muscarinic M1-agonist, $10^{-4}$ M for 2 min) in relatively dose- and time- dependent manners. However, tacrine failed to affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M).$ Tacrine itself at concentrations used in the present experiments did not also affect spontaneous CA output. Furthermore, in the presence of tacrine $(10^{-4}\;M),$ CA secretory responses evoked by Bay-K-8644 (an activator of L-type $Ca^{2+}$ channels, $10^{-4}\;M),$ but not by cyclopiazonic acid (an inhibitor of cytoplasmic $Ca^{2+}-ATPase,\;10^{-4}\;M),$ was relatively time-dependently attenuated. Also, physostigmine $10^{-4}\;M),$ given into the adrenal gland for 60 min, depressed CA secretory responses evoked by ACh, McN-A-343 and DMPP while did not affect that evoked by high $K^+.$ Collectively, these results obtained from the present study demonstrate that tacrine greatly inhibits CA secretion from the perfused rat adrenal gland evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does fail to affect that by direct membrane-depolarization. It is suggested that this inhibitory effect of tacrine may be exerted by blocking both the calcium influx into the rat adrenal medullary chromaffin cells without $Ca^{2+}$ release from the cytoplasmic calcium store, that is relevant to the cholinergic blockade. Also, the mode of action between tacrine and physostigmine in rat adrenomedullary CA secretion seems to be similar.

Influence of Panaxatriol-type Saponin on Secretion of Catecholamines from Isolated Perfused Rabbit Adrenal Gland

  • Kim, Dong-Yoon;Choi, Cheol-Hee;Kim, Chong-Dae;Kim, Kyoon-Hong;Kim, Soo-Bok;Lee, Byeong-Joo;Chung, Myung-Hyun
    • Archives of Pharmacal Research
    • /
    • 제12권3호
    • /
    • pp.166-175
    • /
    • 1989
  • In the previous observations, it was reported that both total ginseng saponin and panaxadiol revealed the marked secretory effect of catecholamines (CA) from the rabbit adrenal gland and that CA secretion induced by them is due to dual mechanisms, cholinergic action and the direct action. In the present study, an attempt to investigate the effect of panaxatriol-type saponin (PT), which is known as an active component of Korean ginseng, on the secretion of CA from the rabbit adrenal gland was made. PT(200 $\mu$g) administered into adrenal vein evoked significantly secretion of CA from the isolated perfused rabbit adrenal gland. Secretory effect of CA produced by PT was attenuated clearly by treatment with chlorisondamine or adenosine, but was markedly increased by physostigmine. Perfusion of Krebs solution containing PT (200 $\mu$g) for 30 min potentiated greatly secretion of CA induced by acetylcholine. PT-induced CA secretion was weakened considerably by ouabain treatement or perfusion of calcium-free Krebs solution. These experimental data demonstrate that PT releases CA from the isolated perfused rabbit adrenal gland by a calcium-dependentd exocytotic mechanism. It seems that the secretory effect of PT is caused through the release of acetylcholine form cholinergic terminals present in the adrenal gland and a direct action on the chromaffin cell itself.

  • PDF

Studies on Secretion of Catecholamine Evoked by Caffeine from the Isolated Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Lee, Jang-Hee;Kim, Won-Shik;Kim, Soo-Bok;Lee, Eun-Hwa;Lee, Byeong-Joo;Ko, Suk-Tai
    • Archives of Pharmacal Research
    • /
    • 제14권1호
    • /
    • pp.55-67
    • /
    • 1991
  • The influence of caffeine on secretion of catecholamines (CA) was examined in the isolated perfused rat adrenal gland. Caffeine (0.3 mM) perfused into an adrenal vein of the gland produced a marked increase in secretion of CA. This secretory effect of CA evoked by perfusion of caffeine for one minute was considerably prolonged, lasting for more than 90 minutes. The tachyphylaxis to releasing effect of CA induced by caffeine was observed by repeated perfusion of this drug. The caffeine-evoked CA secretion was markedly inhibited by pretreatment with ouabain, trifluoperazine, TMB-8 and perfusion with calcium-free Krebs solution containing 5 mM EGTA, but was not affected by perfusion of calcium-free Krebs solution without other addition. CA secretion evoked by caffeine was not reduced significantly by pretreatment with chlorisondamine but after the first collection of perfusate for 3 min was clearly inhibited. Interestingly, the caffeine-evoked CA secretion was considerably potentiated by pretreatment with atropine or pirenzepine, but after the first collection for 3 min it was markedly decreased. These experimental results suggest that caffeine causes a marked increase in secretion of CA from the isolated perfused rat adrenal gland by an extracellular calcium-independent exocytotic mechanism. The secretory effect of caffeine may be mainly due to mobilization of calcium from an intracellular calcium pool in the rat chromaffin cells and partly due to stimulation of both muscarinic and nicotinic receptors.

  • PDF

Green Tea Extract (CUMS6335) Inhibits Catecholamine Release in the Perfused Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Dong-Yoon
    • Natural Product Sciences
    • /
    • 제13권1호
    • /
    • pp.68-77
    • /
    • 2007
  • The aim of the present study was to examine the effects of green tea extract (CUMS6335) on the release of CA evoked by cholinergic stimulation and direct membrane-depolarization in the perfused model of the adrenal gland isolated from the spontaneously hypertensive rats (SHRs), and to establish the mechanism of action. Furthermore, it was also to test whether there is species difference between animals, and between CUMS6335 and EGCG, one of biologically the most powerful catechin compounds found in green tea. CUMS6335 $(100\;{\mu}g/ml)$, when perfused into an adrenal vein for 60 min, time-dependently inhibited the CA secretory responses evoked by ACh (5.32mM), high $K^+$(56 mM), DMPP $(100\;{\mu}M)$, and McN-A-343 $(100\;{\mu}M)$ from the isolated perfused adrenal glands of SHRs. However, CUMS6335 itself did fail to affect basal catecholamine output. Also, in adrenal glands loaded with CUMS6335 $(100\;{\mu}g/ml)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ were also inhibited in a relatively time-dependent fashion. However, in the Presence of EGCG $(8.0\;{\mu}g/ml)$ for 60 min, the CA secretory response evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were not affected except for last period. Collectively, these results indicate that CUMS6335 inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by direct membrane-depolarization from the perfused adrenal gland of the SHR. It seems that this inhibitory effect of CUMS6335 is exerted by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself. It seems likely that there is much difference in mode of the CA-releasing action between CUMS6335 and EGCG.

Green Tea Extract, not Epigallocatechin gallate Inhibits Catecholamine Release From the Rat Adrenal Medulla

  • Park, Hyeon-Gyoon;Lee, Byung-Rai;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제11권1호
    • /
    • pp.33-40
    • /
    • 2003
  • The present study was designed to investigate the effects of green tea extract (CUMC6335) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rat adrenal gland. ill the presence of CUMC6335 (100 $\mu\textrm{g}$/mL) into an adrenal vein for 60 min, CA secretory responses evoked by ACh(5.32 mM), high $K^+$ (56 mM) and Bay-K-8644 (10$\mu$M for 4 min) from the isolated perfused rat adrenal glands were greatly inhibited in a time-dependent fashion. However, EGCG (8 $\mu\textrm{g}$/mL) did not affect CA release evoked by ACh, high $K^+$ and Bay-K-8644. CUMC6335 itself did fail to affect basal catecholamine output. Taken together, these results demonstrate that CUMC6335 inhibits greatly CA secretion evoked by stimulation of cholinergic nicotinic receptors as well as by the direct membrane deplarization from the isolated perfused rat adrenal gland. It is felt that this inhibitory effect of CUMC6335 may be due to blocking action of the L-type dihydropyridine calcium channels in the rat adrenal medullary chromaffin cells, which is relevant to the cholinergic nicotinic blockade. It seems that there is a big difference in mode of action between CUMC6335 and EGCG.

Comparison of Green Tea Extract and Epigallocatechin Gallate on Secretion of Catecholamines from the Rabbit Adrenal Medulla

  • Lim Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • 제28권8호
    • /
    • pp.914-922
    • /
    • 2005
  • The present study was designed to examine the effects of green tea extract (CUMC6335) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rabbit adrenal gland. In the presence of CUMC6335 $(200 {\mu}g/mL)$ into an adrenal vein for 60min, CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100{\mu}M \;for\;2min)$, and Bay-K-8644 $(10{\mu}M\;for\;4min)$ from the isolated perfused rabbit adrenal glands were greatly inhibited in a time-dependent fashion. However, EGCG $(10{\mu}g/mL)$ did not affect CA release evoked by ACh, high $K^+$, and Bay-K-8644. CUMC6335 itself failed to affect basal catecholamine output. Taken together, these results demonstrate that CUMC6335 inhibits CA secretion evoked by stimulation of cholinergic nicotinic receptors, as well as the direct membrane depolarization from the isolated perfused rabbit adrenal gland. It is thought that this inhibitory effect of CUMC6335 may be due at least in part to the blocking action of the L-type dihydropyridine calcium channels in the rabbit adrenomedullary chromaffin cells, which is relevant to the cholinergic nicotinic blockade. It seems that there is a big difference in mode of action between CUMC6335 and EGCG.

Effect of Doxorubicin on Catecholamine Release in the Isolated Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Oh, Song-Hoon;Seoh, Yoo-Seung;Lee, Eun-Sook;Kim, Il-Hwan;Jo, Seong-Ho;Hong, Soon-Pyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.215-223
    • /
    • 2002
  • The present study was undertaken to investigate the effect of doxorubicin (DX) on secretion of catecholamines (CA) evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. DX $(10^{-7}{\sim}10^{-6}\;M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition of CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M).$ However, lower dose of DX did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M),$ but its higher doses depressed time-dependently CA secretion evoked by high $K^+.$ DX itself did also fail to affect basal CA output. In adrenal glands loaded with DX $(3{\times}10^{-7}\;M),$ CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were time-dependently inhibited. Furthermore, daunorubicin $(3{\times}10^{-7}\;M),$ given into the adrenal gland for 60 min, attenuated CA secretory responses evoked by ACh, high $K^+,$ DMPP and McN-A-343. Taken together, these results suggest that DX causes relatively dose- and time-dependent inhibition of CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland. However, lower dose of DX did not affect CA secretion by high $K^+,$ and higher doses of DX reduced time-dependently CA secretion of high $K^+.$ It is thought that these effects of DX may be mediated by inhibiting both influx of extracellular calcium into the rat adrenomedullary chromaffin cells and intracelluar calcium release from the cytoplasmic store. Also, there was no difference in the mode of action between DX and daunorubicin in rat adrenomedullary CA secretion.

Influence of Total Ginseng Saponin on Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Gland

  • Lim Dong-Yoon;Kil Young-Woo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.401-415
    • /
    • 2002
  • Lim and his coworkers (1987; 1988; 1989) have also found that all of total Ginseng saponin, panaxadiol-and panaxatriol-type saponins cause the increased secretion of catecholamines (CA) in a $Ca^{2+}$ -dependent fashion from the isolated perfused rabbit adrenal glands through the activation of cholinergic (both nicotinic and muscarinic) receptors. These CA secretory effects are partly due to the direct action on the rabbit adrenomedullary chromaffin cells. However, the present study was designed to examine the effect of total ginseng saponin on CA secretion evoked by activation of cholinergic nicotinic receptors in the isolated perfused model of the rat adrenal gland. Total ginseng saponin given (100 ${\mu}g$/20 min) into an adrenal vein did fail to produce alteration of spontaneous CA release from the rat adrenal medulla. Acetylcholine(5.32 mM)- and DMPP(100 ${\mu}M$, a selective nicotinic receptor agonist)-evoked CA secretory responses were reduced markedly after the pretreatment with the total ginseng saponin at a rate of 100 ${\mu}g$/6.2 ml/20 min, respectively. Pretreatment with total ginseng saponin also depressed greatly high potassium (56 mM, a membrane depolarizing agent)- and Bay-K-8644 (10 ${\mu}M$, a calcium channel activator)-induced CA secretions. Taken together, it is thought that total ginseng saponin can inhibit the releasing effect of CA evoked by nicotinic receptor stimulation from the isolated perfused rat adrenal medulla, which seems to be associated to the direct inhibition of influx through L-type calcium channel into the rat adrenomedullary chromaffin cells. It seems that there is species differences in the adrenomedullary catecholamine secretion between the rabbit and rat.

  • PDF

Fluoride가 적출장기(摘出臟器)의 Catecholamine 유리(遊離) 및 Monoamine Oxidase 활성도(活性度)에 미치는 영향(影響) (The Influence of Sodium Fluoride on the Release of Catecholamine from Perfused Organs and Monoamine Oxidase Activity)

  • 천연숙;김성숙;이경희;신경철
    • 대한약리학회지
    • /
    • 제8권2호
    • /
    • pp.41-47
    • /
    • 1972
  • Fluorides were supposed to exert a stimulatory action on the catecholamine release. In this study, the authors attempted to investigate the action of sodium fluoride on the catecholamine release from the isolated perfused cow adrenal gland and rat heart. And also the inhibitory effect of sodium fluoride on the monoamine oxidase activity in rat heart and liver mitochondria was investigated. The monoamine oxidase activity was measured by the conversion of benzylamine to benzaldehyde. The results obtained were follows; 1. Sodium fluoride stimulated the release of catecholamine from the isolated perfused cow adrenal gland and rat heart. 2. Sodium fluoride inhibited the rat heart and liver mitochondrial monoamine oxidase activity.

  • PDF