Effect of Doxorubicin on Catecholamine Release in the Isolated Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Oh, Song-Hoon (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Seoh, Yoo-Seung (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Lee, Eun-Sook (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Kim, Il-Hwan (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Jo, Seong-Ho (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Hong, Soon-Pyo (Departments of Internal Medicine (Cardiology), College of Medicine, Chosun University)
  • Published : 2002.08.21

Abstract

The present study was undertaken to investigate the effect of doxorubicin (DX) on secretion of catecholamines (CA) evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. DX $(10^{-7}{\sim}10^{-6}\;M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition of CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M).$ However, lower dose of DX did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M),$ but its higher doses depressed time-dependently CA secretion evoked by high $K^+.$ DX itself did also fail to affect basal CA output. In adrenal glands loaded with DX $(3{\times}10^{-7}\;M),$ CA secretory responses evoked by Bay-K-8644, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were time-dependently inhibited. Furthermore, daunorubicin $(3{\times}10^{-7}\;M),$ given into the adrenal gland for 60 min, attenuated CA secretory responses evoked by ACh, high $K^+,$ DMPP and McN-A-343. Taken together, these results suggest that DX causes relatively dose- and time-dependent inhibition of CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland. However, lower dose of DX did not affect CA secretion by high $K^+,$ and higher doses of DX reduced time-dependently CA secretion of high $K^+.$ It is thought that these effects of DX may be mediated by inhibiting both influx of extracellular calcium into the rat adrenomedullary chromaffin cells and intracelluar calcium release from the cytoplasmic store. Also, there was no difference in the mode of action between DX and daunorubicin in rat adrenomedullary CA secretion.

Keywords

References

  1. Akaike A, Mine Y, Sasa M, Takaori S. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J Pharmacol Exp Ther 255: 333-339, 1990
  2. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360-375, 1962
  3. Bachur NR, Gordon SL, Gee MV. Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol Pharmacol 13: 901-910, 1977
  4. Bounias M, Kladny J, Kruk I, Michalska T, Lichszteld K. Effects of catechols on free radical formation by chemotherapeutic agents adriamycin, farmorubicin and mitomycin. Cancer Detect Prev 21(6): 553-562, 1997
  5. Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 78: 67-82, 1977
  6. Bristow MR, Billingham ME, Daniels JR. Histamine and catecholamines mediate adriamycin cardiotoxicity. Proc Amer Ass Cancer Res 20: 477 abstr., 1979
  7. Bristow MR, Minobe WA, Billingham ME, Marmor JB, Johnson GA, Ishimoto BM, Sageman WS, Daniels JR. Anthracycline associated cardiac and renal damage in rabbits. Evidence for mediation by vasoactive substances. Lab Invest 45: 157-168, 1981
  8. Burgoyne RD. Mechanism of secretion from adrenal chromaffin cells. Biochem Biophys Acta 779: 201-216, 1984 https://doi.org/10.1016/0304-4157(84)90009-1
  9. Cena V, Nicolas GP, Sanchez-Garcia P, Kirpekar SM, Garcia AG. Pharmacological dissection of receptor-associated and voltagesensitive ionic channels involved in catecholamine release. Neuroscience 10: 1455-1462, 1983 https://doi.org/10.1016/0306-4522(83)90126-4
  10. Challis RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083-1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  11. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cytosolic Ca$^2+$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429-434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  12. Chen ZM, Colombo T, Conforti L, Grazia Donelli M, Fiedorowicz RJ, Marchi S, Paolini A, Riva E, Zuanetti G, Latini R. Effects of three new anthracyclines and doxorubicin on the rat isolated heart. J Pharm Pharmacol 39(11): 947-950, 1987 https://doi.org/10.1111/j.2042-7158.1987.tb03137.x
  13. Della-Torre P. Long-lasting effect of dexrazoxone against anthracycline cardiotoxicity in rats. Toxicol Pathol 24: 398-402, 1996 https://doi.org/10.1177/019262339602400402
  14. Essesse I, Gopalaswamy C, El-Sherif N. Cardiac arrhythmias associated with doxorubicin hydrochloride. Circulation 62 (suppl. III): 182 abstr, 1980
  15. Facchinetti T, Muh-Zange M, Salmona M, Carini M, Remmer H. Further studies on Adriamycin-induced in vitro lipid peroxidation. Chem Biol Interacl 38: 357-367, 1982 https://doi.org/10.1016/0009-2797(82)90065-5
  16. Feldman AM, Lorell BH, Reis SE. Trastuzumab in the treatment of metastatic breast cancer: anticancer therapy versus cardiotoxicity. Circulation 102: 272-274, 2000 https://doi.org/10.1161/01.CIR.102.3.272
  17. Fohr KJ, Ahnert-Hilger G, Stecher B, Scott J, Gratzl M. GTP and Ca$^2+$ modulate the inositol 1,4,5-trisphosphate-dependent Ca$^2+$ release in streptolysin O-permeabilized bovine adrenal chromaffin cells. J Neurochem 56: 665-670, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb08201.x
  18. Forsberg EJ, Rojas E, Pollard HP. Muscarinic receptor enhancement of nicotinic-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J Biol Chem 261: 4915-4920, 1986
  19. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69-71, 1984 https://doi.org/10.1038/309069a0
  20. Goerger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on Ca$^2+$ binding and Ca$^2+$ permeability. Biochem Pharmacol 38: 3995- 4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  21. Gu HJ, Mckay SB, Burkman AM, Mckay DB. Comparison of the effects of antimitotic drugs on $\alpha$-tubulin m RNA, microtubules and nicotinic receptor-mediated catecholamine secretion in adrenal chromaffin cells in culture. Gen Pharmac 25(3): 439-446, 1994 https://doi.org/10.1016/0306-3623(94)90194-5
  22. Hardman JG, Limbird LE, Gilman AG. Goodman & Gilman's The pharmacological basis of therapeutics, 10$^th$ ed. McGraw-Hill, New york, pp 1426-1429, 2001
  23. Hammer R, Giachetti A. Muscarinic receptor subtypes: M$_1$and M$_2$ biochemical and functional characterization. Life Sci 31: 2992- 2998, 1982
  24. Hofling B, Bolte HD. Acute negative inotropic effect of adriamycin (doxorubicin). Naunyn-Schiedeberg's Arch Pharmacol 317: 252- 258, 1981 https://doi.org/10.1007/BF00503826
  25. Ilno M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol 94: 363-383, 1989 https://doi.org/10.1085/jgp.94.2.363
  26. Jackson JA, Reeves JP, Muntz KH, Kruk D, Prough RA, Willerson JT, Buja LM. Evaluation of free radical effects and catecholamine alterations in adriamycin cardiotoxicity. Am J Pathol 117(1): 140-153, 1984
  27. Kao LS, Schneider A. Muscarinic receptors on bovine chromaffin cells mediate a rise in cytosolic calcium that is independent of extracellular calcium. J Biol Chem 261: 2019-2022, 1985
  28. Kao LS, Schneider A. Calcium mobilization and catecholamine secretion in adrenal chromaffin cells. J Biol Chem 262: 4881- 4888, 1986
  29. Kawada T, Yamazaki T, Akiyama T, Sato T, Shishido T, Sugimachi M, Sunagawa K. Chronic adriamycin treatment impairs myocardial interstitial neuronal release of norepinephrine and epinephrine. J Cardiovasc Pharmacol 36(suppl 2): s31-s34, 2000 https://doi.org/10.1097/00005344-200000006-00008
  30. Kim KT, Westhead EW. Cellular responses to Ca$^2+$ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca$^2+$ and secretion from bovine chromaffin cells. Proc Natl Acad Sci USA 86(24): 9881- 9885, 1989 https://doi.org/10.1073/pnas.86.24.9881
  31. Ladona MG, Aunis D, Gandia AG, Garcia AG. Dihydropyridine modulation of the chromaffin cell secretory response. J Neurochemstry 48: 483-490, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb04118.x
  32. Lastowecka A, Trifaro JM. The effect of sodium and calcium ions on the release of catecholamines from the adrenal medulla: sodium deprivation induces release by exocytosis in the absence of extracellular calcium. J Physiol Lond 236: 681-705, 1974 https://doi.org/10.1113/jphysiol.1974.sp010460
  33. Lim DY, Hwang DH. Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 27(1): 53-67, 1991
  34. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15(2): 115-125, 1992 https://doi.org/10.1007/BF02974085
  35. Lopez I, Mckay DB. Effects of antimitotic agents on secretion and detergent excitability of adrenal nicotinic acetylcholine receptors. Cell Mol Neurobiol 17(5): 447-454, 1997 https://doi.org/10.1023/A:1026350619823
  36. McKay DB, Schneider AS. Selective inhibition of cholinergic receptor-mediated $^45$Ca$^2+$ uptake and catecholamine secretion from adrenal chromaffin cells by taxol and vinblastine. J Pharmacol Exp Ther 231(1): 102-108, 1984
  37. Oka M, Isosaki M, Yanagihara N. Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In: Catecholamines: Basic and Clinical frontiers (Eds. Usdin E, Kopin IJ and Brachas J). Pergamon Press, Oxford, pp 70-72, 1979
  38. Pinto JEB, Politi PM, Fernandez B. Effect of doxorubicin on release of catecholamines from the bovine adrenal medulla. Arch Int Pharmacodyn 289: 140-148, 1987
  39. Pinto JEB, Martinez-Seeber A, Fernandez B, Dominguez AE. Contrasting effect of verapamil on catecholamine release induced by acetylcholine and by NaCl omission from the bovine adrenal medulla. Arch Int Physiol 91: 63-68, 1983 https://doi.org/10.3109/13813458309106481
  40. Politi PM, Rothlin RP, Pinto JEB. Acute effects of doxorubicin on chronotropic and inotropic mechanisms in guinea-pig atria. Cancer Treat Rep 69: 859-865, 1985
  41. Robison TW, Giri SN. Effects of chronic administration of doxorubicin on myocardial alpha-adrenergic receptors, histamine, cyclic nucleotides, calcium, norepinephrine, calmodulin, and guanylate cyclase activity, and plasma catecholamines in rats. Mol Pathol 54(3): 182-189, 1987
  42. Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca$^2+$ channels. Nature 303: 535-537, 1982 https://doi.org/10.1038/303535a0
  43. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca$^2+$-ATPase of sarcoplasmic reticulum. J Biol Chem 264: 17816-17823, 1989
  44. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med 339: 900-905, 1998 https://doi.org/10.1056/NEJM199809243391307
  45. Signori E, Guevara O. Evaluation of cardiac arrhythmias (CA) by 24-hour Holter monitoring (HM) during adriamycin (A) administration. Proc Amer Ass Cancer Res 22: 355 abstr, 1981
  46. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783-792, 2001 https://doi.org/10.1056/NEJM200103153441101
  47. Soldani G, Del Tacca M, Bernardini C. Noradrenaline and alphablockers in daunomycin cardiotoxicity. Coin Toxicol 18: 1435- 1440, 1981 https://doi.org/10.3109/15563658108990352
  48. Sorimachi M, Yamagami K, Nishimura S. A muscarinic receptor agonist mobilizes Ca$^2+$ from caffeine and inositol-1,4,5-trisphosphatesensitive Ca$^2+$ stores in cat adrenal chromaffin cells. Brain Res 571: 154-158, 1992 https://doi.org/10.1016/0006-8993(92)90523-C
  49. Sparano JA. Use of dexrazoxane and other strategies to prevent cardiomyopathy associated with doxorubicin-taxane combinations. Semin Oncol 25(Suppl. 10): 66-71, 1998
  50. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca$^2+$-pump, reduces Ca$^2+$-dependent K$^+$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  51. Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd Ed New York Speringer-Verlag p132, 1987
  52. Toyoda Y, Okada M, Kashem MA. A canine model of dilated cardiomyopathy induced by repetitive intracoronary doxorubicin administration. J Thorac Cardiovasc Surg 115(6): 1367-1373, 1998 https://doi.org/10.1016/S0022-5223(98)70221-1
  53. Uceda G, Artalejo AR, de la Fuente MT, Lopez MG, Albillos A, Michelena P, Garcia AG, Montiel C. Modulation by L-type Ca$^2+$ channels and apamin-sensitive K$^+$ channels of muscarinic responses in cat chromaffin cells. Am J Physiol 266(5 Pt 1): C1432-1439, 1994 https://doi.org/10.1152/ajpcell.1994.266.5.C1432
  54. Uceda G, Artalejo AR, Lopez MG, Abad F, Neher E, Garcia AG. Ca$^2+$-activated K$^+$ channels modulated muscarinic secretion in cat chromaffin cells. J Physiol 454: 213-230, 1992 https://doi.org/10.1113/jphysiol.1992.sp019261
  55. Uyama Y, Imaizumi Y, Watanabe M. Effects of cyclopiazonic acid, a novel Ca$^2+$-ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 106: 208-214, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14316.x
  56. Villani F, Piccinini F, Merelli P, Favalli L. Influence of adriamycin on calcium exchangeability in cardiac muscle and its modification by ouabain. Biochem Pharmacol 27: 985-987, 1978 https://doi.org/10.1016/0006-2952(78)90429-X
  57. Villani F, Monti E, Piccinini F, Favalli S, Dionigi AR, Lanza E. Effect of doxorubicin on calcium binding sites in guinea - pig heart. Biochem Pharmacol 35: 1203-1204, 1986 https://doi.org/10.1016/0006-2952(86)90162-0
  58. Wada Y, Satoh K, Taira N. Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn- Schmiedebergs Arch Pharmacol 328: 382-387, 1985 https://doi.org/10.1007/BF00692905
  59. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463-480, 1981 https://doi.org/10.1113/jphysiol.1981.sp013676