Green Tea Extract (CUMS6335) Inhibits Catecholamine Release in the Perfused Adrenal Medulla of Spontaneously Hypertensive Rats

  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
  • Published : 2007.03.31

Abstract

The aim of the present study was to examine the effects of green tea extract (CUMS6335) on the release of CA evoked by cholinergic stimulation and direct membrane-depolarization in the perfused model of the adrenal gland isolated from the spontaneously hypertensive rats (SHRs), and to establish the mechanism of action. Furthermore, it was also to test whether there is species difference between animals, and between CUMS6335 and EGCG, one of biologically the most powerful catechin compounds found in green tea. CUMS6335 $(100\;{\mu}g/ml)$, when perfused into an adrenal vein for 60 min, time-dependently inhibited the CA secretory responses evoked by ACh (5.32mM), high $K^+$(56 mM), DMPP $(100\;{\mu}M)$, and McN-A-343 $(100\;{\mu}M)$ from the isolated perfused adrenal glands of SHRs. However, CUMS6335 itself did fail to affect basal catecholamine output. Also, in adrenal glands loaded with CUMS6335 $(100\;{\mu}g/ml)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ were also inhibited in a relatively time-dependent fashion. However, in the Presence of EGCG $(8.0\;{\mu}g/ml)$ for 60 min, the CA secretory response evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were not affected except for last period. Collectively, these results indicate that CUMS6335 inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by direct membrane-depolarization from the perfused adrenal gland of the SHR. It seems that this inhibitory effect of CUMS6335 is exerted by blocking both the calcium influx into the rat adrenal medullary chromaffin cells and the uptake of $Ca^{2+}$ into the cytoplasmic calcium store, which are at least partly relevant to the direct interaction with the nicotinic receptor itself. It seems likely that there is much difference in mode of the CA-releasing action between CUMS6335 and EGCG.

Keywords

References

  1. Abe, Y., Umemura, S., Sugimoto, K., Hirawa, N., Kato, Y., Yokoyama, N., Yokoyama, T., Iwai, J., and Ishii, M., Effect of green tea rich in gamma-aminobutynic acid on blood pressure of Dahl salt-sensitive rats. Am. J. Hyperten. 8, 74-79 (1995) https://doi.org/10.1016/0895-7061(94)00141-W
  2. Anton, A.H. and Sayre, D.F., A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138, 360-375 (1962)
  3. Bingham, S.A., Vorster, H., Jerling, J.C., Magee, E., Mulligan, A., Runswick, S.A., and Cummings, J.H., Effect of tea drinking on blood lipids, blood pressure and aspects of bowel habit. Br. J. Nutr. 78, 41-45 (1997) https://doi.org/10.1079/BJN19970117
  4. Briner, V.A. and Luscher, T., Role of vascular endothelial abnormalities in clinical medicine: atherosclerosis, hypertension, diabetes and endotoxaemia. Adv. Int. Med. 39, 910-915 (1994)
  5. Dixon, Wr., Garcia, A.G., and Kirkekar, S.M., Release of catecholamines and dopamine-beta-hydroxylase from the rat adrenal gland of the cat. J. Physiol. 244, 805-824 (1975) https://doi.org/10.1113/jphysiol.1975.sp010827
  6. Douglas, W.W., Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34, 451-474 (1968) https://doi.org/10.1111/j.1476-5381.1968.tb08474.x
  7. Ferro, C.J. and Webb, D.J., Endothelial dysfunction and hypertinsion. Drugs 53, 30-41 (1997) https://doi.org/10.2165/00003495-199700531-00006
  8. Fitzpatrick, D.F., Hirschfield, S.L., and Coffey, R.G., Endothelium-dependent vasorelaxing activity of wine and other grape products. Am. J. Physiol. 265, H77-78 (1993)
  9. Fisher, S.K., Holz, R.W., and Agranoff, B.W., Muscarinic receptors in chromaffin cell culture mediate enhanced phospholipid labeling but not catecholamine secretion. J. Neurochem. 37, 491-487 (1981) https://doi.org/10.1111/j.1471-4159.1981.tb00482.x
  10. Fitzpatrick, D.F., Hirschfield, S.L., Ricci, T., Jantzen, P., and Coffey, R.G., Endothelium-dependent vasorelaxation caused by various plant extracts. J. Cardiovasc. Pharmacol. 26, 90-95 (1992) https://doi.org/10.1097/00005344-199507000-00015
  11. Flavahan, N.A., Atheroscterosis or Epoprotein-induced endothelial dysfunction: potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation 85, 1927-1938 (1992) https://doi.org/10.1161/01.CIR.85.5.1927
  12. Garcia, A.G., Sala, F., Reig, J.A., Viniegra, S., Frias, J., Fonteriz, R., and Gandia, L., Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309, 69-71 (1984) https://doi.org/10.1038/309069a0
  13. Goeger, D.E. and Riley, R.T., Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem. Pharmacol. 38, 3995-4003 (1989) https://doi.org/10.1016/0006-2952(89)90679-5
  14. Hammer, R. and Giachetti, A., Muscarinic receptor subtypes: $M_{1}$ and $M_{2}$ biochemical and functional characterization. Life Sci. 31, 2992-2998 (1982)
  15. Hodgson, J.M., Puddey, I.B., Byrke, V., and Beilin, L.J., Jordan N: Effects on blood pressure of drinking green and black tea. J. Hypert. 17, 457-463 (1999) https://doi.org/10.1097/00004872-199917040-00002
  16. Huang, Y., Zhang, A.Q., Lau, C.W., and Chen, Z.Y., Vasorelaxant effect of purified green tea epicatechin derivatives in rat mes-enteric artery. Life Sci. 63, 275-283 (1998) https://doi.org/10.1016/S0024-3205(98)00273-2
  17. Huang, Y., Chan, N.W.K., Lau, C.W., Yao, X.Q., Chan, F.L., and Chen, Z.Y., Involvement of endothelium/nilvicoxide in vasorelaxation induced by purified green tea (-) epicatechin. Biochim. Biophys. Acta. 1427, 322-328 (1999) https://doi.org/10.1016/S0304-4165(99)00034-3
  18. Katayama, Y., Homma, T., Hara, Y., and Hirai, K., Tea catechin, (-)-epigallocatechin gallate, facilitates cholinergic ganglion transmission in the myenteric plexus of the guinea-pig small intestine. Neurosci. Lett. 319(2), 63-66 (2002) https://doi.org/10.1016/S0304-3940(01)02545-9
  19. Kidokoro, Y. and Ritchie, A.K., Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J. Physiol. 307, 199-216 (1980) https://doi.org/10.1113/jphysiol.1980.sp013431
  20. Kilpatrick, D.L., Slepetis, R.J., Corcoran, J.J., and Kirshner, N., Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem. 38, 427-435 (1982) https://doi.org/10.1111/j.1471-4159.1982.tb08647.x
  21. Kilpatrick, D.L., Slepetis, R.J., and Kirshner, N., Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem. 36, 1245-1255 (1981) https://doi.org/10.1111/j.1471-4159.1981.tb01724.x
  22. Knight, D. E. and Kesteven, N.T., Evoked transient intracellular free $Ca^{2+}$ changes and secretion in isolated bovine adrenal medullary cells. Proc. R. Soc. Lond. Biol. Sci. 218, 177-199 (1983)
  23. Lim, D.Y., Comparison of Green Tea Extract and Epigallocatechin Gallate on Secretion of Catecholamines from the Rabbit Adrenal Medulla. Arch. Pharm. Res. 28(8), 914-922 (2005) https://doi.org/10.1007/BF02973877
  24. Lim, D.Y., Baek, Y.J., and Lee, E.B., Green Tea Extract (CUMC6335), not Epigallocatechin Gallate, Carses Vascular Relaxation in Rabbits. Natural Product. Sciences 10(5), 228-236 (2004)
  25. Lim, D.Y. and Hwang, D.H., Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol. 27(1), 53-67 (1991)
  26. Lim, D.Y., Kim, C.D., and Ahn, K.W., Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res. 15(2), 115-125 (1992) https://doi.org/10.1007/BF02974085
  27. Lim, D.Y., Lee, E.S., Park, H.G., Kim, B.C., Hong, S.P., and Lee, E.B., Comparison of Green Tea Extract and Epigallocatechin gallate on Blood Pressure and Contractile Responses of Vascular Smooth Muscle of Rats. Arch. Pharm. Res. 26(3), 214-223 (2003) https://doi.org/10.1007/BF02976833
  28. Lim, D.Y., Park, H.G., and Lee, B.R., Green Tea Extract, not Epigallocatechin gallate Inhibits Catecholamine Release From the Rat Adrenal Medulla. J. Applied Pharmacol. 11(1), 33-40 (2003)
  29. Nakazato, Y., Ohga, A., Oleshansky, M., Tomita, U., and Yamada, Y., Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br. J. Pharmacol. 93, 101-109 (1988) https://doi.org/10.1111/j.1476-5381.1988.tb11410.x
  30. Pincomb, G.A., Lovallo, W.R., Mckey, B.S., Sung, B.H., Passey, R.B., and Everson, S.A., Acute blood pressure elevations with caffeine in men with borderline systemic hypertension. Am. J. Cardiol. 77, 270-274 (1996) https://doi.org/10.1016/S0002-9149(97)89392-7
  31. Quinlan, P., Lane, J., and Aspinal, L., Effects of hot tea, coffee and water ingestion on physiological responess and mood: role of caffeine, water and beverage type. Psychopharmacology 134, 164-173 (1997) https://doi.org/10.1007/s002130050438
  32. Rakic, V., Beilin, L.J., and Burke, V., Effect of coffee and tea drinking on postprandial hypotension in older men and women. Clin. Exp. Pharmacol. Physiol. 23, 559-563 (1996) https://doi.org/10.1111/j.1440-1681.1996.tb02779.x
  33. Rice-Evans, C.A., Miller, N.J., Bolwell, P.G., Bramley, P.M., and Pridham, J.B., The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Rad. Res. 22, 375-383 (1995) https://doi.org/10.3109/10715769509145649
  34. Romero-Ahira, D. and Roche, E., High blood pressure orgeniradicals and antioxidants: enological relationships. Med. Hypoth. 46, 414-420 (1996) https://doi.org/10.1016/S0306-9877(96)90196-6
  35. Schramm, M., Thomas, G., Towart, R., and Franckowiak, G., Novel dihydropyridines with positive inotropic action through activation of $Ca^{2+}$ channels. Nature 303, 535-537 (1982) https://doi.org/10.1038/303535a0
  36. Seidler, N.W., Jona, I., Vegh, N., and Martonosi, A., Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816-17823 (1989)
  37. Shalleck, J., Tea. Viking Press, New York, 1996, pp. 7
  38. Sorimachi, M., Nishimura, S., and Yamagami, K., Possible occurence of $Na^{+}$-dependent $Ca^{2+}$ influex mechanism in isolated bovine chromaffin cells. Brain Res. 208, 442-446 (1981) https://doi.org/10.1016/0006-8993(81)90574-6
  39. Sorimachi, M. and Yoshida, K., Exocytotic release of catecholamines and dopamine-beta-hydroxylase from the perfused adrenal gland of the rabbit and cat. Br. J. Pharmacol. 65(1), 117-125 (1979) https://doi.org/10.1111/j.1476-5381.1979.tb17340.x
  40. Stensvold, I., Tverdal, A., and Solvoll, K., Foss OP: Tea consumption. Relationship to cholesterol, blood pressure, and coronary and total mortality. Prev. Med. 21, 546-553 (1992) https://doi.org/10.1016/0091-7435(92)90062-M
  41. Sung, B.H., Whitsett, T.L., Lovallo, W.R., Absi, M., Pincomv, G.A., and Wilson, M.F., Prolonged increase in blood pressure by a single orial dose of caffeine in mildly hypertensive men. Am. J. Hypertens. 7, 755-756 (1994)
  42. Suzuki, M., Muraki, K., Imaizumi, Y., and Watanabe, M., Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$-pump, reduces $Ca^{2+}$-dependent $K^{+}$ currents in guinea-pig smooth muscle cells. Br. J. Pharmacol. 107, 134-140 (1992) https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  43. Tallarida, R.J. and Murray, R.B., Manual of pharmacologic calculation with computer programs. 2nd Ed. New York, Speringer-Verlag, 1987, pp. 132
  44. Viveros, O.H., Mechanism of secretion of catecholaminies from adrenal medulla, In handbook of physiology, Endocrinology: Vol VI, Sect 7, The adrenal gland, American physiological society Washington DC, 1975, pp. 389-426
  45. Viveros, O.H., Arqueros, L.C., and Kirshner, N., Release of catecholamines and dopamine beta-hydroxylase from the adrenal medulla. Life Sci. 7, 609-618 (1968) https://doi.org/10.1016/0024-3205(68)90186-0
  46. Wada, Y., Satoh, K., and Taira, N., Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn-Schmiedebergs Arch. Pharmacol. 328, 382-387 (1985a) https://doi.org/10.1007/BF00692905
  47. Wada, A., Takara, H., Izumi, F., Kobayashi, H., and Yanagihara, N., Influx of $^{22}Na$ through acetylcholine receptor-associated Na channels: relationship between $^{22}Na$ influx, $^{45}Ca$ influx and secretion of catecholamines in cultured bovine adrenal medullary cells. Neuroscience 15, 283-292 (1985b) https://doi.org/10.1016/0306-4522(85)90135-6
  48. Wakade, A.R., Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480 (1981) https://doi.org/10.1113/jphysiol.1981.sp013676
  49. Wakade, A.R. and Wakade, T.D., Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 10, 973-978 (1983) https://doi.org/10.1016/0306-4522(83)90235-X
  50. Yanagihara, N., Isosaki, M., Ohuchi, T., and Oka, M., Muscarinic receptor-mediated increase in cyclic GMP level in isolated bovine adrenal medullary cells. FEBS Lett. 105, 296-298 (1979) https://doi.org/10.1016/0014-5793(79)80633-X
  51. Yokozawa, T., Oura, H., Sakanaka, S., Ishigaki, S., and Kim, M., Depressor effect of tannin in green tea on rats with renal hypertension. Biosci. Biotech. Biochem. 58, 855-858 (1994) https://doi.org/10.1271/bbb.58.855