• Title/Summary/Keyword: Performance-based Statistics

Search Result 1,048, Processing Time 0.026 seconds

The shifted Chebyshev series-based plug-in for bandwidth selection in kernel density estimation

  • Soratja Klaichim;Juthaphorn Sinsomboonthong;Thidaporn Supapakorn
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.337-347
    • /
    • 2024
  • Kernel density estimation is a prevalent technique employed for nonparametric density estimation, enabling direct estimation from the data itself. This estimation involves two crucial elements: selection of the kernel function and the determination of the appropriate bandwidth. The selection of the bandwidth plays an important role in kernel density estimation, which has been developed over the past decade. A range of methods is available for selecting the bandwidth, including the plug-in bandwidth. In this article, the proposed plug-in bandwidth is introduced, which leverages shifted Chebyshev series-based approximation to determine the optimal bandwidth. Through a simulation study, the performance of the suggested bandwidth is analyzed to reveal its favorable performance across a wide range of distributions and sample sizes compared to alternative bandwidths. The proposed bandwidth is also applied for kernel density estimation on real dataset. The outcomes obtained from the proposed bandwidth indicate a favorable selection. Hence, this article serves as motivation to explore additional plug-in bandwidths that rely on function approximations utilizing alternative series expansions.

A Goodness-of-Fit Test for Multivariate Normal Distribution Using Modified Squared Distance

  • Yim, Mi-Hong;Park, Hyun-Jung;Kim, Joo-Han
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.607-617
    • /
    • 2012
  • The goodness-of-fit test for multivariate normal distribution is important because most multivariate statistical methods are based on the assumption of multivariate normality. We propose goodness-of-fit test statistics for multivariate normality based on the modified squared distance. The empirical percentage points of the null distribution of the proposed statistics are presented via numerical simulations. We compare performance of several test statistics through a Monte Carlo simulation.

Testing the Goodness of Fit of a Parametric Model via Smoothing Parameter Estimate

  • Kim, Choongrak
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.645-660
    • /
    • 2001
  • In this paper we propose a goodness-of-fit test statistic for testing the (null) parametric model versus the (alternative) nonparametric model. Most of existing nonparametric test statistics are based on the residuals which are obtained by regressing the data to a parametric model. Our test is based on the bootstrap estimator of the probability that the smoothing parameter estimator is infinite when fitting residuals to cubic smoothing spline. Power performance of this test is investigated and is compared with many other tests. Illustrative examples based on real data sets are given.

  • PDF

Two-dimensional attention-based multi-input LSTM for time series prediction

  • Kim, Eun Been;Park, Jung Hoon;Lee, Yung-Seop;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.39-57
    • /
    • 2021
  • Time series prediction is an area of great interest to many people. Algorithms for time series prediction are widely used in many fields such as stock price, temperature, energy and weather forecast; in addtion, classical models as well as recurrent neural networks (RNNs) have been actively developed. After introducing the attention mechanism to neural network models, many new models with improved performance have been developed; in addition, models using attention twice have also recently been proposed, resulting in further performance improvements. In this paper, we consider time series prediction by introducing attention twice to an RNN model. The proposed model is a method that introduces H-attention and T-attention for output value and time step information to select useful information. We conduct experiments on stock price, temperature and energy data and confirm that the proposed model outperforms existing models.

Estimation of the Change Point in Monitoring the Mean of Autocorrelated Processes

  • Lee, Jae-Heon;Han, Jung-Hee;Jung, Sang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.155-167
    • /
    • 2007
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose the maximum likelihood estimator (MLE) for the process change point when a control chart is used in monitoring the mean of a process in which the observations can be modeled as an AR(1) process plus an additional random error. The performance of the proposed MLE is compared to the performance of the built-in estimator when they are used in EWMA charts based on the residuals. The results show that the proposed MLE provides good performance in terms of both accuracy and precision of the estimator.

The Role of Artificial Observations in Testing for the Difference of Proportions in Misclassified Binary Data

  • Lee, Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.513-520
    • /
    • 2012
  • An Agresti-Coull type test is considered for the difference of binomial proportions in two doubly sampled data subject to false-positive error. The performance of the test is compared with the likelihood-based tests. It is shown that the Agresti-Coull test has many desirable properties in that it can approximate the nominal significance level with compatible power performance.

Tests of Hypotheses in Multiple Samples based on Penalized Disparities

  • Park, Chanseok;Ayanendranath Basu;Ian R. Harris
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.347-366
    • /
    • 2001
  • Robust analogues of the likelihood ratio test are considered for testing of hypotheses involving multiple discrete distributions. The test statistics are generalizations of the Hellinger deviance test of Simpson(1989) and disparity tests of Lindsay(1994), obtained by looking at a 'penalized' version of the distances; harris and Basu (1994) suggest that the penalty be based on reweighting the empty cells. The results show that often the tests based on the ordinary and penalized distances enjoy better robustness properties than the likelihood ratio test. Also, the tests based on the penalized distances are improvements over those based on the ordinary distances in that they are much closer to the likelihood ratio tests at the null and their convergence to the x$^2$ distribution appears to be dramatically faster; extensive simulation results show that the improvement in performance of the tests due to the penalty is often substantial in small samples.

  • PDF

A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics

  • Lim, Jaechan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1520-1529
    • /
    • 2013
  • In this paper, we propose and assess the performance of "H infinity filter ($H_{\infty}$, HIF)" and "cost reference particle filter (CRPF)" in the problem of tracking a target based on the measurements of the range and the bearing of the target. HIF and CRPF have the common advantageous feature that we do not need to know the noise statistics of the problem in their applications. The performance of the extended Kalman filter (EKF) is also compared with that of the proposed filters, but the noise information is perfectly known for the applications of the EKF. Simulation results show that CRPF outperforms HIF, and is more robust because the tracking of HIF diverges sometimes, particularly when the target track is highly nonlinear. Interestingly, when the tracking of HIF diverges, the tracking of the EKF also tends to deviate significantly from the true track for the same target track. Therefore, CRPF is very effective and appropriate approach to the problems of highly nonlinear model, especially when the noise statistics are unknown. Nonetheless, HIF also can be applied to the problem of timevarying state estimation as the EKF, particularly for the case when the noise statistcs are unknown. This paper provides a good example of how to apply CRPF and HIF to the estimation of dynamically varying and nonlinearly modeled states with unknown noise statistics.

Performance Comparison of GPS Fault Detection and Isolation via Pseudorange Prediction Model based Test Statistics

  • Yoo, Jang-Sik;Ahn, Jong-Sun;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.797-806
    • /
    • 2012
  • Fault detection and isolation (FDI) algorithms provide fault monitoring methods in GPS measurement to isolate abnormal signals from the GPS satellites or the acquired signal in receiver. In order to monitor the occurred faults, FDI generates test statistics and decides the case that is beyond a designed threshold as a fault. For such problem of fault detection and isolation, this paper presents and evaluates position domain integrity monitoring methods by formulating various pseudorange prediction methods and investigating the resulting test statistics. In particular, precise measurements like carrier phase and Doppler rate are employed under the assumption of fault free carrier signal. The presented position domain algorithm contains the following process; first a common pseudorange prediction formula is defined with the proposed variations in pseudorange differential update. Next, a threshold computation is proposed with the test statistics distribution considering the elevation angle. Then, by examining the test statistics, fault detection and isolation is done for each satellite channel. To verify the performance, simulations using the presented fault detection methods are done for an ideal and real fault case, respectively.

Image enhancement using the local statistics

  • Ryu, Jin-Bong;Kim, Woon-Kyung
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.3-6
    • /
    • 2003
  • A nonlinear iterative filtering based on local statistics and anisotropic diffusion is introduced. Local statistics determines the diffusion coefficient at each iteration step. Anisotropic diffusion can be seen as estimates a piecewise smooth image from the noisy input image in the experimental section, our results are shown to suppress noise with preserving the edges. Therefore, it enhances the image and improves performance.

  • PDF