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Testing the Goodness of Fit of a Parametric Model
via Smoothing Parameter Estimate

Choongrak Kim, Changkon Hong, and Meeseon Jeong!

ABSTRACT

In this paper we propose a goodness-of-fit test statistic for testing the
(null) parametric model versus the (alternative) nonparametric model. Most
of existing nonparametric test statistics are based on the residuals which are
obtained by regressing the data to a parametric model. Our test is based
on the bootstrap estimator of the probability that the smoothing parameter
estimator is infinite when fitting residuals to cubic smoothing spline. Power
performance of this test is investigated and is compared with many other
tests. Illustrative examples based on real data sets are given.

Keywords: Generalized cross-validation; Residuals; Smoothing spline; Wild boot-
strap.

1. INTRODUCTION

It is quite often to test the goodness-of-fit of the postulated model when
one fits a parametric model to data. For a long time parametric goodness-of-fit
test has been used for this purpose, which is an F-test using the general linear
test approach. As argued by Eubank and Spiegelman (1990), parametric tests are
against another postulated (alternative) model and are inconsistent against many
other alternatives, especially against those which are orthogonal to the postulated
alternative. This drawback of parametric approach demands a different approach;
nonparametric approach. For the last decade many nonparametric tests have
been suggested by Cox, et. al. (1988), Munson and Jernigan (1989), Eubank
and Spiegelman (1990), Buckley (1991), Eubank and Hart (1992, 1993), and
Hardle and Mammen (1993). In this paper, we introduce a new nonparametric
goodness-of-fit test which has good power and ready-to-use critical value.

Consider the regression model

yi = flz;) +g(zs) +e, i=1,...,n
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where 0 < z; < -+ < z, <1 are fixed design points, f has a known paramet-
ric (linear or nonlinear) form, g is unknown smooth function, and the ¢;’s are
independent and identically distributed random variables with E(e;) = 0 and
Var(e;) = 0% < 0o. We wish to test

H0:g=0

Most of the existing nonparametric tests assume f is linear. But our test allows
f to be linear or nonlinear. Our test has the same spirit as many other tests in
the sense of using the residuals from parametric regressing y on z, and regressing
the residuals nonparametrically.

In Section 2 most of the nonparametric tests and their critical values are
introduced. In Section 3 we discuss the relationship between the hat matrix and
the smoothing parameter, and the rationale on our test statistic. In Section 4 we
study the pattern of generalized cross-validation (GCV), critical values for our
test statistic, and compare power with other tests under alternatives. Illustrative
examples based on real data sets are given in Section 5, and concluding remarks
are given in Section 6.

2. NONPARAMETRIC TESTS : REVIEW

2.1. Test Statistics

Let r = (r1,...,7,)" be residual vector from fitting the data to a parametric
model specified under null hypothesis. Most test statistics are derived by non-
parametric regression of r. Nonparametric regression methods used are smooth-
ing spline, series estimator and kernel regression. Before introducing nonpara-
metric test statistics suggested so far, it is helpful to introduce unified notations.
Let Q be n xn matrix, M(A) = Q+nAl,and X = {a:,-j"l}i=1,_“,n;j=1,_",m benxm
matrix. If a cubic smoothing spline is used, m = 2. Also, define an n x (n — m)
matrix U such that U'X = 0 and U’'U = 1. Define sample Fourier coefficients
by a; = V23" yicos(jmz;), j = 1,...,n —1, and let 62 be a \/n—consistent
estimator of 02. (For example see Rice (1984)).

Earlier, von Neumann (1941) used

VN =r'r/5?
as a test statistic.

Cox, et. al. (1988) suggested the locally most powerful (LMP) test when the
null hypothesis is f is a polynomial of degree m — 1 or less, and the alternative is
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f+gis “smooth” based on a Bayesian model. Let (s, t) be the covariance kernel
for (m — 1)-fold integrated Wiener process, that is, Q(s,t) = {(m —1)!}2 fol (s—
w) P (t — u)?"'du, where t; = maz{0,t}. It rejects Hy if

CK =r'Qr

is too large, where Q = (Q(z;, z;)).
Under the same perspective as Cox, et. al. (1988), Buckley (1991) derived an

LMP test .
n 1
BU =) {> rj}*/n?e%

i=1 j=1

Eubank and Hart (1993) note that 6°BU/o? = CK.
Similar test to CK is considered by Munson and Jernigan (1989). Let 7 be
the natural cubic spline interpolant to r. They suggested

MJ = J(7)/r'r,

where J(h) = [} h"(t)2dt.
On the other hand, Eubank and Spiegelman (1990) suggested a test based on
fitting cubic smoothing splines to r, i.e.,

ES = {rr_"2z 1+/\9 —2}/02{22 1+A0) 4}1/2

7j=3

where f is cubic smoothing spline fit tor and 0 < 83 < 64 < --- < 8, which are
eigenvalues defined in Demmler and Reinsch(1975). Here, A must be preassigned.
When the Fourier series estimator is used, the risk becomes

k

_“.__ Z ,_EU_E}

Eubank and Hart (1992) used

k

. cak
El=k=ar =
k€{012 Zl

as a test statistic, and derived ¢, so that P(k = 0) = 1 — a. Formally, E1 is given
by “reject Hg if £ > 17.
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Later, instead of k, Eubank and Hart (1993) proposed

k
E2 =) d?/5”
i=1

as a test statistic. Here, & can be preassigned or replaced by data-driven estima-
tor.

In the same paper, Eubank and Hart (1993) proposed another test based on
the linear smoothing spline fit to r, i.e.,

n—1
E3 =) a?/6%(1+ \y;)?,
j=1
where v; = {2n sin(%%)}"’. Again, A must be preassigned or be replaced by data-
driven estimator.
On the other hand, Hirdle and Mammen (1993) proposed a test statistic
using the kernel regression. To be more specific, let 7ii;, be a kernel estimator

with bandwidth h and kernel K. They proposed
1
HM = i/ [ Gin(z) - Knf (@),
0

where Kng(-) = 3 Ka(- — Xi)g(Xi)/ X Kn(- — Xi), Kn() = h™'K(-/h) and
f(z) is a parametric fit under Hy. Similar to k in E2 and X in E3, h must be
preassigned or be replaced by data-driven estimator.

2.2. Critical Values

For a test statistic to be useful in practice, an appropriate critical value must
be available for a given level of significance. By the generic property of nonpara-
metric approach, it is impossible to get an exact critical value for a nonparametric
test, and therefore, only asymptotic results are available by the asymptotic distri-
bution of test statistics. Asymptotic distribution for VN, BU, E2, E3 are given by
Eubank and Hart (1993), ES by Eubank and Spiegelman (1990), E1 by Eubank
and Hart (1992), and HM by Hérdle and Mammen (1993).

As argued by Hardle and Mammen (1993), however, convergence to the
asymptotic distribution is quite slow so that it is more appropriate not to use the
asymptotic critical values. In fact, as critical values most authors who suggested
test statistics in Section 2.1 used the Monte Carlo approximation or bootstrap
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in their simulation studies on power of tests and in real data analysis. To de-
rive critical values of the test statistics in Section 2.1, A in ES, k in E2, A in
E3, and h in HM must be preassigned or be replaced by data-driven estimator.
Therefore, critical values based on the Monte Carlo or bootstrap depend on the
actual assignment. For example, ES converges to the standard normal under
some regularity conditions, however, Eubank and Spiegelman (1990) suggested
2.2 by Monte Carlo study instead of 1.645 as a 95th percentile. But, based on our
simulation, it was 1.8 when A = .0001 (which was used in their numerical exam-
ple). Also, Hardle and Mammen (1993) showed that the kernel density via “wild
bootstrap” is more appropriate than the asymptotic normal distribution as a dis-
tribution for HM. However, the critical value depend heavily on the smoothing
parameter h.

3. THE PROPOSED TEST

Let P be the hat matrix such that r = (I — P)y. If Hy is correct, the pattern
of r is close to white noise since the residuals are evenly distributed around zero.
Therefore, the nonparametric regression, for example cubic smoothing spline, of
r will result in the large value of the smoothing parameter A. Conversely, if Hg
is not correct, the resulting A will be small. So, we propose a goodness-of-fit test
for Hy : ¢ = 0 as the magnitude of ), estimate of A. Throughout this paper, we
estimate A by the GCV criterion.

Our idea on the test statistic is closely related with the Theorem 3 in Cox,
et. al. (1988). The hat matrix in smoothing spline is

H()) = I - aAU(U'M(\)U) U 3.1)

when we fit nonparametrically to r. Therefore, the fitted values are & = H(\)r.
Note that if Hy is correct, we prefer A = oo and the corresponding hat matrix
H in (3.1) becomes P. The Theorem 3 in Cox et. al. (1988) is that the GCV
criterion V() has a (possibly local) minimum at A = co whenever

y'I-P)Q(I-P)y <tr(Q)y'(I-P)y/(n—m). (3.2)

Through simulation study they showed that under Hy the probability that the
inequality (3.2) holds is approximately 0.671. However (3.2) is not a sufficient
condition that GCV has A = oo as the minimizer, but is a necessary condition.
Hopefully, when fitting r to cubic smoothing spline, the minimizer of GCV occurs
at A = oo under Hy. However, our simulation results show that the minimizer
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of GCV occurs at A = oo in about 58900 cases out of 100,000 replications. This
property was already recognized by Wahba (1990, p.86; 581 cases out of 1000
replications) through simulation studies. That is, about 41% of the minimizer of
GCV is finite even though Hy is true. We noticed that this probability changes
as the sample size n changes. (See Section 4.2 for details) This shows that },
the GCV estimator of ), is too sensitive to the randomness of the error terms.
The sensitivity of ) may cause trouble when we use ) itself as a test statistic.
If the level of significance & < .41, the critical value based on ) itself becomes
meaningless. However, A will be also sensitive to departures from Hy. Therefore,
the probability that GCV criterion will choose A = 0o as the minimizer will serve
as a good criterion. So, if the probability that A = oo could be estimated, it could
be a good (in the sense of power) test statistic. That is to say, a good test is not
“reject Hy if ) is small”, but “reject Hy if the estimated probability of A < oo
is large”. In order to estimate this probability we use resampling technique, and
suggest our test procedure as follows;

1. Obtain B sets of data by resampling techniques such as bootstrap or jack-
knife. One possible method is;
i) fit cubic smoothing spline to the original data, and get residuals.
ii) resample B sets from residuals by bootstrap.
iii) generate B sets of response vector by adding B sets of resampled resid-

uals from ii) to the fitted values from i).

2. Fit B sets of data generated by step 1 to a parametric model and get
residuals.

3. Fit the B sets of residuals obtained in step 2 to cubic smoothing spline and
get B X’s by the GCV criterion.

4. Reject Hy if LC > ¢, where LC(Lambda hat Count) is number of finite A
out of B \’s obtained from 3.

The critical value ¢ will be discussed in Section 4. The bootstrap procedure in
step 1 is a version of residual bootstrap.

4. SIMULATION RESULTS

In the following Monte Carlo studies, we assume X has uniform design in
[0,1], i.e, z; = (i —1)/(n — 1), i = 1,...,n, and the ¢;’s are iid N(0,02). Cubic
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smoothing spline is used and the GCV criterion to estimate A. We use RKPACK
(Gu, 1989) with the grid search method, and 1,000 replications are done.

4.1. GCV Pattern

We present four typical types of GCV pattern when n = 100 (see Figure 1).
In fact, we compute GCV for —15 < log;y nA < 35 and Figure 1 shows GCV for
~5 < log;onA < 10. Minimum occurs at A = oo in Figure 1(a) and (c), and at
finite A in Figure 1(b) and (d). To compute X via grid search, we have to be
very cautious in Figure 1(c) case. Sufficient range of A is required to get global
minimum.
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Figure 1: Four Typical Types of GCV Pattern When n = 100. Minimum Occurs
at A\ = oo in (a) and (c), and at Finite A in (b) and (d).

4.2. Critical Values

To get Monte Carlo approximation to p, = P(A = oo| Hy), we generate 10°
samples of size n under null model. For ¢ = 0.05,0.1,0.5,1.0, we obtain almost
the same result. Scale invariant property can be easily checked by the definition
of GCV. The p,’s for n = 10 (10) 100 (100) 500 are approximated. For n < 100,
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we obtain a simple formula;
Pn = .399 + .094910g,o n (4.1)

But for n > 100, p, ~ .59. When B=100, 95tk percentile of the simulated data
could be simplified as

88 , n > 100
cpn~g 108—n/5 , 40<n<100 (4.2)
100 , n<40

4.3. Power of the Proposed Test

(i) f(z) = Bo (constant); n = 100

We choose two types of models in Eubank and Hart (1993), i.e.

i) = Bule*™ — (e* — 1)/4H{ St — (T2

g2(z) = 2B1{20(z — )% - 3(z — 1)}
Powers are estimated for VN, BU, ES, E1, E2, E3, HM, and LC with 3, =
.25 (.25) 1.00 and standard normal errors, and 1,000 replications are done. Crit-
ical values for VN, BU, ES, E2, E3, and HM are evaluated based on 1,000 repli-
cations to control the level and “wild bootstrap” is used for HM. Of course 1 for
E1l and 88 for LC by (4.2) are used. Results are summarized in Table 1. In g,
BU, E3, and HM are better than others, but others are not bad at all. In go,
ES, HM, and LC are much better than others. Therefore, it seems that power
performance of BU, VN, El, E2, and E3 depend heavily on the specification of
the alternative model.

(ii) f(z) = Bo + Brz; n = 100
From (i), we found that ES, HM, and LC are quite powerful in both g; and
g2. Here, we set the null model as linear instead of constant, and choose the same

alternative models as in Eubank and Spiegelman (1990).

91(z) = Paze

g2(z) = Box®
We compute powers of ES, E1, HM, and LC. We include E1 because it has ready-
to-use critical value. 1,000 replications were done for o = .05, .10, .20, and Sy and
B1 were set as 1. Powers are estimated for S, = .00 (.05) 1.00. Figure 2(a),
(b), (c) show power of four tests for o = .05,.10,.20, respectively in g;. As in
(i), ES, HM, and LC perform similarly, and better than E1 for all 0. The same
phenomenon occurs in g9, too. (See Figure 3.)
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Table 1. Proportion of Rejections in 1,000 Samples of Size 100 with g; and g9

B, 1/4 2/4 3/4 4/4
VN .120 .613 984 1.000
BU .563 995 1.000 1.000
ES 131 A75 .832 .969
g1 El1 376 906 1.000 1.000
E2 .328 .940 1.000 1.000
E3 .420 979 1.000 1.000
HM 470 1.000 1.000 1.000
LC .140 470 .820 .980
VN .087 .340 .802 .974
BU .045 134 450 .849
ES .346 922 1.000 1.000
go E1 088 .288 .769 976

E2 .160 .643 .972 .998
E3 .169 701 984 .999
HM 180 750 990 1.000
LC .340 .820 990 1.000

o ‘ /// °

© ] A @

= // . j |

: ;o 2

o~ /’ ‘

° / : P f'/"r

SR s 77

(a) sigma = 0 05

10

o8

06

o2

00

(ch sigma = C 2

Figure 2: Empirical Powers of ES (

(L) sigma - 0 !

------ ), E1 (- - - -), HM (- - -), and LC
(——-) in 1,000 Samples of Size 100 With u(z) = By + Biz + Baze™%; (a), (b),
(c) Correspond to o = .05, .10, .20, respectively.
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Figure 3: Empirical Powers of ES (------ ), E1 (----), HM (- - -), and LC

( ) in 1,000 Samples of Size 100 With ua(z) = By + i1z + Boz?; (a), (b), (c)
correspond to o = .05, .10, .20, respectively.

4.4. Comparison with the Parametric F-test

Note that F-test is possible only when the alternative hypothesis is specifically
postulated. Therefore, best power for F-test can achieve occurs when the data
are generated from the postulated model. Otherwise, power of F-test will be
clearly poor. To see this, we do F-test in two ways. Let Hg : By + Biz vs. Hy :
Bo + Biz + Pax?. First, if data are generated under H; for S = 0.0 (0.2) 1.0,
then power of F-test, say F1, can be computed by the noncentral F-distribution.
Therefore, power of F1 is best possible that F-test can achieve. Next, we generate
data from Sy + B1z + Boxze%* and compute power of F-test, say F2, through the
Monte Carlo approximation. We compare power of F1 and F2 with L.C and ES
when error terms follow N(0,02) with 0 = .05. As shown in Figure 4, LC is
still more powerful than F1, and F1 is much better than F2. Also, F1 is slightly
better than ES when 0 < 82 < .10.
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Figure 4: Empirical Powers of ES (--- - -- ), F-test (- ---), and LC ( ) in 1,000
Samples of Size 100 With f(x) = By + B1z and g(z) = B22%. In (a), Power of F-
test Is Computed When Random Numbers Are Generated From g + 1z + foz?,
and in (b), Power of F-test Is Computed When Random Numbers Are Generated
From By + fiz + Baze 22,

4.5. Comparision with LMP Tests

Under Bayesian model, CK and BU are LMP tests. To compare the local
behavior of LC with that of CK, we use two types of data; one from the Bayesian
model and the other from the (non-Bayesian) polynomial model. We can antici-
pate that CK outperform LC under Bayesian model.

First, under Bayesian model, we consider

yi = Bo + Brxi + PaZ(zi) + €, i =1,...,100,

where Z(z;) is the i-th component of random vector from the multivariate normal
distribution with mean zero and variance-covariance matrix Q defined in Section
2, and ¢; is iid normal with mean zero and variance 2. Also, Z(z;)’s and ¢;'s are
independent. Gy and B, are set as 1 and o= .05, and powers are estimated for
B2 =.02 (.02) .10 (.20) 1.0. As shown in Figure 5(a), CK is much more powerful
than LC.

To see what will happen under polynomial model, we consider
yi = Bo + Bizi + fozf + &, i =1,...,100,

which was used in Section 4.3 (ii). Again, we set §yp = ) =1, 0=.05. In this
case, LC outperform CK uniformly. (See Figure 5(b)).
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Figure 5: Empirical Powers of CK (------ ) and LC ( ) in 1,000 Samples
of Size 100. Bayesian Model and Polynomial Model are Used in (a) and (b),
respectively.

5. EXAMPLES

As illustrative examples, we apply our procedure to three sets of data; one is
linear and others are nonlinear under Hy.

5.1. Salary Data

First, consider the average salaries of teachers in public elementary and sec-
ondary schools in the U.S. from 1964-1965 to 1974-1975 (Gunst and Mason, 1980).
This data set were used by Eubank and Spiegelman (1990) with f(z) = By + Sz,
and they concluded that a linear model does not seem appropriate for this data.
As shown in Figure 6, it is more reasonable to set f(z) = By + Bi1z + 222 by the
scatter diagram. We apply ES, E1, and LC(with B=100) to Hy : f(z) = 8o + b1z
and Hy : f(z) = B + iz + B2x?, and results are summarized in Table 2. All
the three tests give the same results at @ = .05. We conclude that second order
polynomial fit is enough to the Salary data. (See Figure 6)

Table 2. Test Results to Salary Data

null model test statistic rejection region result
Bo + Biz ES = 13.38 ES > 2.2 Reject Hy
El=1 El>1 Reject Hy
LC =100 LC > 100 Reject Hy
Bo + Biz + Pox? ES=0.70 ES> 2.2 Do not reject Hy
El1=0 E1>1 Do not reject Hg

LC =47 LC > 100 Do not reject Hy
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Figure 6: Fits to the Salary Data : e ¢ e, Response; ------ , Linear Fit; - - - - |
Quadratic Fit; , Spline Fit.

5.2. Prognosis Index Data

As a nonlinear case, we adopt prognosis index data in Neter, Wasserman, and
Kutner (1989, p.552). The predictor variable is number of days of hospitalization,
and the response variable is index for long-term recovery. The model used was

yi = Poexp(Bizi) + &

under Hy. Here, n = 15 and LC is applied for B=100 resamples, and get LC=61.
Since the rejection region from (4.2) is LC > 100, we can not reject Hy at a = 0.05,
and Figure 7 shows that it is hard to reject Hy.

o
@0

B ] \\
S |
.l\_\\
« \\>;
2 \'\\
o 20 40 60
Figure 7: Fits to the Prognosis Index Data : e e o, Response; ------ , Nonlinear

Fit; , Spline Fit.
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5.3. Chloride Data

Sredni (1970) analyzed data on chloride ion transport through blood cell walls
using the nonlinear regression model

yi = Bo(l — Br1e™P2%) gy, i=1,...,54.

The data are listed in Bates and Watts (1988, p.276). Bates and Watts (1988)
notice that residual plot show sinusoidal pattern. So, they transform the response
based on AR(1), and the fit after transformation is more satisfactory than the
original fit.

We apply LC to the original data, and get LC = 100 when B=100. The
rejection region from (4.2) is LC > 98, and the null hypothesis is rejected.

30

25

20

15

2 3 4 5 6 7 8

Figure 8: Fits to the Chloride Data : o o o, Response; ------ , Nonlinear Fit;
, Spline Fit.

6. CONCLUDING REMARKS

Goodness-of-fit tests are frequently employed by statisticians when they fit
a parametric model to data. Parametric F-test is available if the alternative is
given. Many nonparametric tests are suggested for the general alternative. All
these test statistics are based on the residuals obtained from fitting the data to
a parametric model. Then, they applied nonparametric fit (smoothing spline,
series estimator, or kernel regression) to residuals. One disappointing story is
that critical values for these statistics are not at hand because the convergence
is so slow that the asymptotic distribution for those statistics cannot be used.
Instead, the Monte Carlo approximation was used. However, the critical values
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obtained in this way cannot be expressed as a simple formula (except E1), so that
they must be evaluated whenever the size of data n changes. Another drawback
in these tests (except HM) is that the null model must be linear. Also, some tests
like ES, E2, E3, and HM require the amount of smoothing. This can be done
by arbitrary assignment or replaced by the data-driven estimator, however, it is
quite dangerous as argued in Section 3.

In this paper, we propose a new test statistic (LC) based on the magnitude
of the smoothing parameter estimator, and compare power of LC with others
under various situations. We show that ES, HM, and LC are more powerful
than others, and are robust in the sense of alternative specification. But, ES and
HM contain unknown smoothing parameter. In addition, LC is more powerful
than F-test when the alternative is specified. Further, our test can also be used
without any modification when the null is nonlinear. One possible disadvantage
of our test is using the resampling technique to compute test statistic. We believe
the resampling step is not a big deal to achieve good power, ready-to-use critical
values, and no restrictions in the specification of null (parametric) model.
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