• Title/Summary/Keyword: Performance testing

Search Result 3,498, Processing Time 0.035 seconds

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.

Evaluation of IH-1000 for Automated ABO-Rh Typing and Irregular Antibody Screening (ABO 및 RhD 혈액형 검사와 비예기항체 선별검사를 위한 자동화장비 IH-1000의 평가)

  • Park, Youngchun;Lim, Jinsook;Ko, Younghuyn;Kwon, Kyechul;Koo, Sunhoe;Kim, Jimyung
    • The Korean Journal of Blood Transfusion
    • /
    • v.23 no.2
    • /
    • pp.127-135
    • /
    • 2012
  • Background: Despite modern advances in laboratory automated medicine, work-process in the blood bank is still handled manually. Several automated immunohematological instruments have been developed and are available in the market. The IH-1000 (Bio-Rad Laboratories, Hercules, CA, USA), a fully automated instrument for immunohematology, was recently introduced. In this study, we evaluated the performance of the IH-1000 for ABO/Rh typing and irregular antibody screening. Methods: In October 2011, a total of 373 blood samples for ABO/Rh typing and 303 cases for unexpected antibody screening were collected. The IH-1000 was compared to the manual tube and slide methods for ABO/Rh typing and to the microcolumn agglutination method (DiaMed-ID system) for antibody screening. Results: For ABO/Rh typing, concordance rate was 100%. For unexpected antibody screening, positive results for both column agglutination and IH-1000 were observed in 10 cases (four cases of anti-E and c, three of anti-E, one of anti-D, one of anti-M, and one of anti-Xg) and negative results for both were observed in 289 cases. The concordance rate between IH-1000 and column agglutination was 98.7%. Sensitivity and specificity were 90.9% and 99.3%, respectively. Conclusion: The automated IH-1000 showed good correlation with the manual tube and slide methods and the microcolumn agglutination method for ABO-RhD typing and irregular antibody screening. The IH-1000 can be used for routine pre-transfusion testing in the blood bank.

Assembly and Testing of a Visible and Near-infrared Spectrometer with a Shack-Hartmann Wavefront Sensor (샤크-하트만 센서를 이용한 가시광 및 근적외선 분광기 조립 및 평가)

  • Hwang, Sung Lyoung;Lee, Jun Ho;Jeong, Do Hwan;Hong, Jin Suk;Kim, Young Soo;Kim, Yeon Soo;Kim, Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.108-115
    • /
    • 2017
  • We report the assembly procedure and performance evaluation of a visible and near-infrared spectrometer in the wavelength region of 400-900 nm, which is later to be combined with fore-optics (a telescope) to form a f/2.5 imaging spectrometer with a field of view of ${\pm}7.68^{\circ}$. The detector at the final image plane is a $640{\times}480$ charge-coupled device with a $24{\mu}m$ pixel size. The spectrometer is in an Offner relay configuration consisting of two concentric, spherical mirrors, the secondary of which is replaced by a convex grating mirror. A double-pass test method with an interferometer is often applied in the assembly process of precision optics, but was excluded from our study due to a large residual wavefront error (WFE) in optical design of 210 nm ($0.35{\lambda}$ at 600 nm) root-mean-square (RMS). This results in a single-path test method with a Shack-Hartmann sensor. The final assembly was tested to have a RMS WFE increase of less than 90 nm over the entire field of view, a keystone of 0.08 pixels, a smile of 1.13 pixels and a spectral resolution of 4.32 nm. During the procedure, we confirmed the validity of using a Shack-Hartmann wavefront sensor to monitor alignment in the assembly of an Offner-like spectrometer.

Development of heat exchanger for underground water heat. II - Design and manufacture for heat exchanger of underground water - (지하수 이용을 위한 열교환기 개발. II - 지하수이용 냉·난방기 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.128-137
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger by using the parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. 0247164, offered by Korean Intellectual property Office). The trial manufactures were made from Aloo-heat which was 600mm, 700mm length respectively, and It were welded to the end "U" type in order to direct flow of the underground water. The performance test was carried out under the condition of open space and room temperature with the change of flow rate of the underground water and air. The results are as follows. 1. The trial manufactures had convection heat value from 33 to 156 W/m2℃, and It was coincided with design assumption. 2. The amount of energy transfer was increased with the increment of the area of heat transfer, the air flow, the gap of temperature inlet & outlet the underground water and the air. 3. The heat value was 6,825W when the air flow was 6,000m3/h and the gap of temperature between inlet and outlet of the underground water was 6℃, and It dropped from 25.8℃ to 23.2℃(-2.6℃ difference). The convection heat value was 88.5W/m2℃. 4. The heat value was 2.625W when the air flow was 4,000m3/h and the gap of temperature between inlet and outlet the underground water was 2℃, and It dropped from 27℃ to 22.5℃(-4.5℃ difference). The convection heat value was 33.6W/m2℃. 5. Correlation values(R2) of the testing heat values of the trial manufacture type I, II, and III were 0.9141, 0.8935, and 0.9323 respectively, and correlation values(R2) of the amount of the air flow 6,000m3/h, 5,000m3/h, 4,000m3/h were 0.9513, 0.9414, and 0.9003 respectively.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

A Study on the Effect of User Value on Smartwatch Digital HealthcareAcceptance Intention to Promote Digital Healthcare Venture Start Up (Digital Healthcare 벤처창업 촉진을 위한, 사용자 가치가 Smartwatch Digital Healthcare 수용의도에 미치는 영향 연구)

  • Eekseong Jin;soyoung Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.2
    • /
    • pp.35-52
    • /
    • 2023
  • Recently, as the non-face-to-face environment has developed due to COVID-19 and environmental pollution, the importance of online digital healthcare is increasing, and venture start-ups and activities such as health care, telemedicine, and digital treatments are also actively underway. This study conducted the impact on the acceptability of digital healthcare smartwatches with an integrated approach of the expanded integrated technology acceptance model (UTAUT2) and the behavioral inference model (BRT). The most advanced integrated technology acceptance model for innovative technology acceptance research was used to identify major factors such as utility expectations, social effects, convenience, price barriers, lack of alternatives, and behavioral intentions. For the study, about 410 responses from ordinary people in their teens to 60s across the country were collected, and based on this, the hypothesis was verified using structural equations after testing reliability and validity of the data. SPSS 23 and AMOS 23 were used for research analysis. Studies have shown that personal innovation has a significant impact on the reasons for acceptance (use value, social impact, convenience of use), attitude, and non-use (price barriers, lack of alternatives, and barriers to use). These results are the same as the results of previous studies that confirmed the influence of the main value of innovative ICT on user acceptance intention. In addition, the reason for acceptance had a significant effect on attitude, but the effect of the reason for non-acceptance was not significant. It can be analyzed that consumers are interested in new ICT products and new services, but purchase them more carefully and selectively. This study has evolved from the acceptance analysis of general-purpose consumer innovation technology to the acceptance analysis of consumer value in smartwatch digital healthcare, which is a new and important area in the future. Industrially, it can contribute to the product's purchase and marketing. It is hoped that this study will contribute to increasing research in the digital healthcare sector, which will play an important role in our lives in the future, and that it will develop into in-depth factors that are more suitable for consumer value through integrated approach models and integrated analysis of consumer acceptance and non-acceptance.

  • PDF

Evaluation of Neonicotinoid Pesticides' Residual Toxicity to Honeybees Following or Foliage Treatment (네오니코티노이드계 농약의 사용방법에 따른 꿀벌엽상잔류 독성 평가)

  • Jin Ho Kim;Chul-Han Bae;ChangYul Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.484-497
    • /
    • 2024
  • Neonicotinoid pesticides, widely used worldwide as potent insecticides, have been found to have detrimental effects on the environment and living organisms due to their persistent residues. This study aimed to investigate the neonicotinoid pesticides, imidacloprid, and clothianidin, focusing on their impact on honey bee toxicity and foliar residue levels. Alfalfa was selected as control crop while bell peppers, and cucumbers were chosen as representative application crops, respectively. The investigation involved comparing the toxicity and foliar residue levels resulting from soil and foliar treatments, with a focus on identifying potential shortcomings in conventional foliar residue toxicity testing methods. Imidacloprid and clothianidin were applied to crops or soil at recommended rates and through irrigation. The honey bee mortality rate (RT25) over time was determined, and pesticide residues on leaves were quantified using High-Performance Liquid Chromatography (HPLC). The results revealed that foliar treatment with imidacloprid on alfalfa resulted in an RT25 of less than 1 day, with residues ranging from 1.07 to 19.27 mg/kg. In contrast, application on bell peppers showed RT25 within 9 days, with residues ranging from 1.00 to 45.10 mg/kg. Clothianidin foliar treatment displayed RT25 within 10 days on alfalfa, with residues between 0.61 and 2.57 mg/kg. On bell peppers, RT25 was within 28 days, with residues ranging from 0.13 to 2.85 mg/kg. Soil treatment with imidacloprid and clothianidin in alfalfa exhibited minimal impact on honey bees and residues of 0.05 to 0.37 mg/kg. However, in applied crops, imidacloprid showed RT25 within 28 days and residues ranging from 4.47 to 130.43 mg/kg, while clothianidin exhibited RT25 within 35 days and residues between 5.96 and 42.32 mg/kg. In conclusion, when comparing honey bee toxicity and foliar residues among crops, application crops had a more significant impact on honey bee mortality and higher residue levels compared to control crops. Moreover, soil treatment for application crops resulted in higher RT25 and residue levels compared to foliar treatment. Therefore, to ensure pesticide safety and environmental sustainability, diverse research approaches considering different crops and application methods are necessary for the safety assessment of imidacloprid and clothianidin.

Deep Learning-based Fracture Mode Determination in Composite Laminates (복합 적층판의 딥러닝 기반 파괴 모드 결정)

  • Muhammad Muzammil Azad;Atta Ur Rehman Shah;M.N. Prabhakar;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2024
  • This study focuses on the determination of the fracture mode in composite laminates using deep learning. With the increase in the use of laminated composites in numerous engineering applications, the insurance of their integrity and performance is of paramount importance. However, owing to the complex nature of these materials, the identification of fracture modes is often a tedious and time-consuming task that requires critical domain knowledge. Therefore, to alleviate these issues, this study aims to utilize modern artificial intelligence technology to automate the fractographic analysis of laminated composites. To accomplish this goal, scanning electron microscopy (SEM) images of fractured tensile test specimens are obtained from laminated composites to showcase various fracture modes. These SEM images are then categorized based on numerous fracture modes, including fiber breakage, fiber pull-out, mix-mode fracture, matrix brittle fracture, and matrix ductile fracture. Next, the collective data for all classes are divided into train, test, and validation datasets. Two state-of-the-art, deep learning-based pre-trained models, namely, DenseNet and GoogleNet, are trained to learn the discriminative features for each fracture mode. The DenseNet models shows training and testing accuracies of 94.01% and 75.49%, respectively, whereas those of the GoogleNet model are 84.55% and 54.48%, respectively. The trained deep learning models are then validated on unseen validation datasets. This validation demonstrates that the DenseNet model, owing to its deeper architecture, can extract high-quality features, resulting in 84.44% validation accuracy. This value is 36.84% higher than that of the GoogleNet model. Hence, these results affirm that the DenseNet model is effective in performing fractographic analyses of laminated composites by predicting fracture modes with high precision.

Consumer Responses to Retailer's Location-based Mobile Shopping Service : Focusing on PAD Emotional State Model and Information Relevance (유통업체의 위치기반 모바일 쇼핑서비스 제공에 대한 소비자 반응 : PAD 감정모델과 정보의 상황관련성을 중심으로)

  • Lee, Hyun-Hwa;Moon, Hee-Kang
    • Journal of Distribution Research
    • /
    • v.17 no.2
    • /
    • pp.63-92
    • /
    • 2012
  • This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model in the present study as a conceptual framework. The results of an online survey of 335 mobile phone users in the U.S. indicated the positive effects of arousal and information relevancy on pleasure. In addition, there was a significant relationship between pleasure and intention to use a LBMSS. However, the relationship between dominance and pleasure was not statistically significant. The results of the present study provides insight to retailers and marketers as to what factors they need to consider to implement location-based mobile shopping services to improve their business performance. Extended Abstract : Location aware technology has expanded the marketer's reach by reducing space and time between a consumer's receipt of advertising and purchase, offering real-time information and coupons to consumers in purchasing situations (Dickenger and Kleijnen, 2008; Malhotra and Malhotra, 2009). LBMSS increases the relevancy of SMS marketing by linking advertisements to a user's location (Bamba and Barnes, 2007; Malhotra and Malhotra, 2009). This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective response. The purpose of the study was to examine the relationship among information relevancy and affective variables and their effects on intention to use LBMSS. Thus, information relevancy was integrated into pleasure-arousal-dominance (PAD) model and generated the following hypotheses. Hypothesis 1. There will be a positive influence of arousal concerning LBMSS on pleasure in regard to LBMSS. Hypothesis 2. There will be a positive influence of dominance in LBMSS on pleasure in regard to LBMSS. Hypothesis 3. There will be a positive influence of information relevancy on pleasure in regard to LBMSS. Hypothesis 4. There will be a positive influence of pleasure about LBMSS on intention to use LBMSS. E-mail invitations were sent out to a randomly selected sample of three thousand consumers who are older than 18 years old and mobile phone owners, acquired from an independent marketing research company. An online survey technique was employed utilizing Dillman's (2000) online survey method and follow-ups. A total of 335 valid responses were used for the data analysis in the present study. Before the respondents answer any of the questions, they were told to read a document describing LBMSS. The document included definitions and examples of LBMSS provided by various service providers. After that, they were exposed to a scenario describing the participant as taking a saturday shopping trip to a mall and then receiving a short message from the mall. The short message included new product information and coupons for same day use at participating stores. They then completed a questionnaire containing various questions. To assess arousal, dominance, and pleasure, we adapted and modified scales used in the previous studies in the context of location-based mobile shopping service, each of the five items from Mehrabian and Russell (1974). A total of 15 items were measured on a seven-point bipolar scale. To measure information relevancy, four items were borrowed from Mason et al. (1995). Intention to use LBMSS was captured using two items developed by Blackwell, and Miniard (1995) and one items developed by the authors. Data analyses were conducted using SPSS 19.0 and LISREL 8.72. A total of usable 335 data were obtained after deleting the incomplete responses, which results in a response rate of 11.20%. A little over half of the respondents were male (53.9%) and approximately 60% of respondents were married (57.4%). The mean age of the sample was 29.44 years with a range from 19 to 60 years. In terms of the ethnicity there were European Americans (54.5%), Hispanic American (5.3%), African-American (3.6%), and Asian American (2.9%), respectively. The respondents were highly educated; close to 62.5% of participants in the study reported holding a college degree or its equivalent and 14.5% of the participants had graduate degree. The sample represents all income categories: less than $24,999 (10.8%), $25,000-$49,999 (28.34%), $50,000-$74,999 (13.8%), and $75,000 or more (10.23%). The respondents of the study indicated that they were employed in many occupations. Responses came from all 42 states in the U.S. To identify the dimensions of research constructs, Exploratory Factor Analysis (EFA) using a varimax rotation was conducted. As indicated in table 1, these dimensions: arousal, dominance, relevancy, pleasure, and intention to use, suggested by the EFA, explained 82.29% of the total variance with factor loadings ranged from .74 to .89. As a next step, CFA was conducted to validate the dimensions that were identified from the exploratory factor analysis and to further refine the scale. Table 1 exhibits the results of measurement model analysis and revealed a chi-square of 202.13 with degree-of-freedom of 89 (p =.002), GFI of .93, AGFI = .89, CFI of .99, NFI of .98, which indicates of the evidence of a good model fit to the data (Bagozzi and Yi, 1998; Hair et al., 1998). As table 1 shows, reliability was estimated with Cronbach's alpha and composite reliability (CR) for all multi-item scales. All the values met evidence of satisfactory reliability in multi-item measure for alpha (>.91) and CR (>.80). In addition, we tested the convergent validity of the measure using average variance extracted (AVE) by following recommendations from Fornell and Larcker (1981). The AVE values for the model constructs ranged from .74 through .85, which are higher than the threshold suggested by Fornell and Larcker (1981). To examine discriminant validity of the measure, we again followed the recommendations from Fornell and Larcker (1981). The shared variances between constructs were smaller than the AVE of the research constructs and confirm discriminant validity of the measure. The causal model testing was conducted using LISREL 8.72 with a maximum-likelihood estimation method. Table 2 shows the results of the hypotheses testing. The results for the conceptual model revealed good overall fit for the proposed model. Chi-square was 342.00 (df = 92, p =.000), NFI was .97, NNFI was .97, GFI was .89, AGFI was .83, and RMSEA was .08. All paths in the proposed model received significant statistical support except H2. The paths from arousal to pleasure (H1: ${\ss}$=.70; t = 11.44), from information relevancy to intention to use (H3 ${\ss}$ =.12; t = 2.36), from information relevancy to pleasure (H4 ${\ss}$ =.15; t = 2.86), and pleasure to intention to use (H5: ${\ss}$=.54; t = 9.05) were significant. However, the path from dominance to pleasure was not supported. This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model as a conceptual framework. The results of the present study support previous studies indicating that emotional responses as well as cognitive responses have a strong impact on accepting new technology. The findings of this study suggest potential marketing strategies to mobile service developers and retailers who are considering the implementation of LBMSS. It would be rewarding to develop location-based mobile services that integrate information relevancy and which cause positive emotional responses.

  • PDF

Mature Market Sub-segmentation and Its Evaluation by the Degree of Homogeneity (동질도 평가를 통한 실버세대 세분군 분류 및 평가)

  • Bae, Jae-ho
    • Journal of Distribution Science
    • /
    • v.8 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • As the population, buying power, and intensity of self-expression of the elderly generation increase, its importance as a market segment is also growing. Therefore, the mass marketing strategy for the elderly generation must be changed to a micro-marketing strategy based on the results of sub-segmentation that suitably captures the characteristics of this generation. Furthermore, as a customer access strategy is decided by sub-segmentation, proper segmentation is one of the key success factors for micro-marketing. Segments or sub-segments are different from sectors, because segmentation or sub-segmentation for micro-marketing is based on the homogeneity of customer needs. Theoretically, complete segmentation would reveal a single voice. However, it is impossible to achieve complete segmentation because of economic factors, factors that affect effectiveness, etc. To obtain a single voice from a segment, we sometimes need to divide it into many individual cases. In such a case, there would be a many segments to deal with. On the other hand, to maximize market access performance, fewer segments are preferred. In this paper, we use the term "sub-segmentation" instead of "segmentation," because we divide a specific segment into more detailed segments. To sub-segment the elderly generation, this paper takes their lifestyles and life stages into consideration. In order to reflect these aspects, various surveys and several rounds of expert interviews and focused group interviews (FGIs) were performed. Using the results of these qualitative surveys, we can define six sub-segments of the elderly generation. This paper uses five rules to divide the elderly generation. The five rules are (1) mutually exclusive and collectively exhaustive (MECE) sub-segmentation, (2) important life stages, (3) notable lifestyles, (4) minimum number of and easy classifiable sub-segments, and (5) significant difference in voices among the sub-segments. The most critical point for dividing the elderly market is whether children are married. The other points are source of income, gender, and occupation. In this paper, the elderly market is divided into six sub-segments. As mentioned, the number of sub-segments is a very key point for a successful marketing approach. Too many sub-segments would lead to narrow substantiality or lack of actionability. On the other hand, too few sub-segments would have no effects. Therefore, the creation of the optimum number of sub-segments is a critical problem faced by marketers. This paper presents a method of evaluating the fitness of sub-segments that was deduced from the preceding surveys. The presented method uses the degree of homogeneity (DoH) to measure the adequacy of sub-segments. This measure uses quantitative survey questions to calculate adequacy. The ratio of significantly homogeneous questions to the total numbers of survey questions indicates the DoH. A significantly homogeneous question is defined as a question in which one case is selected significantly more often than others. To show whether a case is selected significantly more often than others, we use a hypothesis test. In this case, the null hypothesis (H0) would be that there is no significant difference between the selection of one case and that of the others. Thus, the total number of significantly homogeneous questions is the total number of cases in which the null hypothesis is rejected. To calculate the DoH, we conducted a quantitative survey (total sample size was 400, 60 questions, 4~5 cases for each question). The sample size of the first sub-segment-has no unmarried offspring and earns a living independently-is 113. The sample size of the second sub-segment-has no unmarried offspring and is economically supported by its offspring-is 57. The sample size of the third sub-segment-has unmarried offspring and is employed and male-is 70. The sample size of the fourth sub-segment-has unmarried offspring and is not employed and male-is 45. The sample size of the fifth sub-segment-has unmarried offspring and is female and employed (either the female herself or her husband)-is 63. The sample size of the last sub-segment-has unmarried offspring and is female and not employed (not even the husband)-is 52. Statistically, the sample size of each sub-segment is sufficiently large. Therefore, we use the z-test for testing hypotheses. When the significance level is 0.05, the DoHs of the six sub-segments are 1.00, 0.95, 0.95, 0.87, 0.93, and 1.00, respectively. When the significance level is 0.01, the DoHs of the six sub-segments are 0.95, 0.87, 0.85, 0.80, 0.88, and 0.87, respectively. These results show that the first sub-segment is the most homogeneous category, while the fourth has more variety in terms of its needs. If the sample size is sufficiently large, more segmentation would be better in a given sub-segment. However, as the fourth sub-segment is smaller than the others, more detailed segmentation is not proceeded. A very critical point for a successful micro-marketing strategy is measuring the fit of a sub-segment. However, until now, there have been no robust rules for measuring fit. This paper presents a method of evaluating the fit of sub-segments. This method will be very helpful for deciding the adequacy of sub-segmentation. However, it has some limitations that prevent it from being robust. These limitations include the following: (1) the method is restricted to only quantitative questions; (2) the type of questions that must be involved in calculation pose difficulties; (3) DoH values depend on content formation. Despite these limitations, this paper has presented a useful method for conducting adequate sub-segmentation. We believe that the present method can be applied widely in many areas. Furthermore, the results of the sub-segmentation of the elderly generation can serve as a reference for mature marketing.

  • PDF