• Title/Summary/Keyword: Performance isolation

Search Result 1,070, Processing Time 0.027 seconds

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

Effects of a Nursing Simulation Learning Module on Clinical Reasoning Competence, Clinical Competence, Performance Confidence, and Anxiety in COVID-19 Patient-Care for Nursing Students (코로나19 간호시뮬레이션 학습모듈이 간호대학생의 임상추론역량, 임상수행능력, 간호수행자신감 및 불안에 미치는 효과)

  • Kim, Ye-Eun;Kang, Hee-Young
    • Journal of Korean Academy of Nursing
    • /
    • v.53 no.1
    • /
    • pp.87-100
    • /
    • 2023
  • Purpose: This study aimed to develop a nursing simulation learning module for coronavirus disease 2019 (COVID-19) patient-care and examine its effects on clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient care for nursing students. Methods: A non-equivalent control group pre- and post-test design was employed. The study participants included 47 nursing students (23 in the experimental group and 24 in the control group) from G City. A simulation learning module for COVID-19 patient-care was developed based on the Jeffries simulation model. The module consisted of a briefing, simulation practice, and debriefing. The effects of the simulation module were measured using clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient-care. Data were analyzed using χ2-test, Fisher's exact test, t-test, Wilcoxon signed-rank test, and Mann-Whitney U test. Results: The levels of clinical reasoning competence, clinical competence, and performance confidence of the experimental group were significantly higher than that of the control group, and the level of anxiety was significantly low after simulation learning. Conclusion: The nursing simulation learning module for COVID-19 patient-care is more effective than the traditional method in terms of improving students' clinical reasoning competence, clinical competence, and performance confidence, and reducing their anxiety. The module is expected to be useful for educational and clinical environments as an effective teaching and learning strategy to empower nursing competency and contribute to nursing education and clinical changes.

Development of High-performance Microwave Water Surface Current Meter for General Use to Extend the Applicable Velocity Range of Microwave Water Surface Current Meter on River Discharge Measurements (전자파표면유속계를 이용한 하천유량측정의 적용범위 확장을 위한 고성능 범용 전자파표면유속계의 개발)

  • Kim, Youngsung;Won, Nam-Il;Noh, Joonwoo;Park, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.613-623
    • /
    • 2015
  • To overcome the difficulties of discharge measurements during flood season, MWSCM(micowave water surface current meter) which measures river surface velocities without contacting water has been applied in field work since its development. The existing version of MWSCM is for floods so that its applicability is low due to the short periods of floods. Therefore the renovative redesign of MWSCM to increase the applicability was conducted so that it can be applied to the discharge measurements during normal flows as well as flood ones by extending the measurable range of velocity. A newly developed high-performance MWSCM for general use can measure the velocity range of 0.03-20.0 m/s from flood flows to normal flows, whereas MWSCM for floods can measure the velocity range of 0.5-10.0 m/s. The improvement of antenna isolation between transmitter and receiver to block the inflow of transmitted singals to receiver and the improvement of phase noise of oscillator are necessary for detecting low velocity with MWSCM technology. Separate type antenna of transmitting and receiving signals is developed for isolation enhancement and phase locked loop synthesizer as an oscillator is applied to high-performance MWSCM for general use. Microwave frequency of 24 GHz is applied to the new MWSCM rather than 10 GHz to make the new MWSCM small and light for convenient use of it at fields. Improvement requests on MWSCM for floods-stable velocity measurement, self test, low power consumtion, and waterproof and dampproof-from the users of it has been reflected on the development of the new version of MWSCM.

Reducing Vibration of a Centrifugal Turbo Blower for FCEV Using Vibrational Power Flow (진동 동력 흐름 기법을 이용한 FCEV용 원심형 터보 블로워의 진동 저감)

  • Kim, Yoon-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.150-158
    • /
    • 2009
  • A centrifugal turbo blower is one of the part to generate electric power of fuel cell electric vehicle(FCEV). In order to generate the electric power of FCEV, the centrifugal turbo blower operates at very high speed above 30,000rpm in order to increase the pressure of the air, which supplied to a stack of FCEV, using rotation of its impeller blades. Vibration which originated from the blower is generated by unbalance of mechanical components, rotation of bearings and rotating asymmetry that rotate at high speed. The vibration is transmitted to receiving structure through vibration isolators and it can causes serious problems in the noise, vibration and harshness(NVH) performance. Thus, the study about reducing this kind of vibration is an important task. Quantifying the effectiveness of vibration isolation can be effectively accomplished by using vibrational power flow because relative contributions of each isolator to the total vibration transmission can be easily represented. In this paper, vibrational power flow is applied to the centrifugal turbo blower mounted on FCEV in order to analyze the most dominant vibration transmitting path. As a result, the main contributor among four isolators is a mount #3 of the blower. Also, a 30 percent lowering of the mount #3 stiffness shows 34 percent decrement of vibrational power flow by the simulation.

Effects of Rotational Stiffness of Isolators on Vibration Power Transmission in Vibration Isolation Systems over High Frequency Range (진동 절연계에서 절연요소 회전강성계수가 고주파수 대역 진동파워 전달에 미치는 영향)

  • 김진성;이호정;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.375-383
    • /
    • 2003
  • For a performance analysis of vibration isolation systems, the concept of vibration power flow can be employed preferably when noise radiated from the supporting structure with finite impedances is of interest. The idea is basically simple to understand and formulas for precise estimation of the vibration power are easy to derive. However, It is often required to simplify the process of experimentation under several assumptions due to instrumental limitations. For an example, rotational degree of freedom has not been well treated in bending vibrations of beam or plate-like structures. Yet, several recent studies showed that the moments and rotations play an important role in power transmission and should be taken into consideration carefully as the frequency range of interest goes to audibly high. Therefore, it is readily agreed that reduction of the noise radiation over the high frequency range can be effectively accomplished by adjusting the rotational stiffness of the isolator without changing the vibration isolator efficiency in low frequency range relevant to the translational stiffness of the isolator In this paper, the vibration power flow approach is applied to an AC motor installed on a finite plate in order to illustrate the contribution of the rotational vibration power to the total vibration power transmission. The effects of rotational stiffness of the isolator on the vibration power transmission are investigated by inserting various shapes of Isolators with different rotational stiffness but with $ame translational stiffness between the motor and the plate. The resultant noise radiation from the plate is presented to verify the proposed approach.

Verification of Micro-vibration Isolation Performance by using Low Rotational Stiffness Isolator under Elevation Direction Operation of the X-band Antenna (저 회전강성 진동 절연기에 의한 X-밴드 안테나의 고각방향 미소진동 절연 효과 검증)

  • Jeon, Su-Hyeon;Lee, Jae-Gyeong;Jeong, Sae-Han-Sol;Lee, Myeong-Jae;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.238-246
    • /
    • 2015
  • A stepping motor is widely used to operate the elevation and azimuth stage of the X-band antenna with 2-axis gimbal system for effective image data transmission from a satellite to a ground station. However, such stepping motor also generates an undesirable micro-vibration which is one of the main disturbance sources affecting image quality of the high-resolution observation satellite. In order to improve the image quality, the micro-vibration isolation of the X-band antenna system is essential. In this study, the low rotational stiffness isolator has been proposed to reduce the micro-vibration disturbance induced by elevation direction operation of the X-band antenna. In addition, its structural safety was confirmed by the structure analysis based on the derived torque budget. The effectiveness of the design was also verified through the micro-vibration measurement test.

Implementation of High-Power PM Diode Switch Modules and High-Speed Switch Driver Circuits for Wibro Base Stations (와이브로 기지국 시스템을 위한 고전력 PIN 다이오드 스위치 모듈과 고속 스위치 구동회로의 구현)

  • Kim, Dong-Wook;Kim, Kyeong-Hak;Kim, Bo-Bae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.364-371
    • /
    • 2007
  • In this paper, the design and implementation of high-power PIN diode switch modules and high-speed switch driver circuits are presented for Wibro base stations. To prevent isolation degradation due to parasitic inductances of conventional packaged PIN diodes and to improve power handling capabilities of the switch modules, bare diode chips are used and carefully placed in a PCB layout, which makes bonding wire inductances to be absorbed in the impedance of a transmission line. The switch module is designed and implemented to have a maximum performance while using a minimum number of the diodes. It shows an insertion loss of ${\sim}0.84\;dB$ and isolation of 80 dB or more at 2.35 GHz. The switch driver circuit is also fabricated and measured to have a switching speed of ${\sim}200\;nsec$. The power handling capability test demonstrates that the module operates normally even under a digitally modulated 70 W RF signal stress.

2.6 GHz-Band MIMO Omni Antenna Having Folded Configuration (폴디드 구조를 갖는 2.6 GHz 대역 MIMO 무지향 안테나)

  • Lee, Su-Won;Lee, Jae-Du;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 2015
  • In this paper, we propose 2.6 GHz single band dual polarization MIMO omni antenna for in-building applications. The proposed antenna operates at 2.6 GHz single LTE band, Up-link 2.52~2.54 GHz and Down-link 2.64~2.66 GHz. Horizontal and vertical polarizations of the antenna has been, respectively, constructed by the synthesis of four folded loop antennas and the folded monopole antenna. The height of the MIMO omni-directional antenna is minimized to be less than ${\lambda}/13.5$ from the ground. The measurement results show excellent MIMO omni antenna performance of 2.85 dBi vertical polarization gain, 2.29 dBi horizontal polarization gain, and 19.25 dB port isolation.

Multiple Antenna System for Next Generation Mobile Communication (차세대 이동 통신용 다중 안테나 시스템)

  • Han, Min-Seok;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.660-669
    • /
    • 2010
  • In this paper, a multiple antenna system for next generation mobile applications is proposed. The proposed MIMO antenna consists of two parallel folded monopole antennas with the length of 100 mm and spacing of 6 mm and a decoupling network which locates at the top side of a mobile handset. In order to improve the isolation characteristic at the LTE band 13, a decoupling network was added between the two antenna elements placed close to each other. The decoupling network, consisting of two transmission lines, a shunt reactive component and common ground line, is simple and compact. To obtain the wide bandwidth characteristic, an wide folded patch structure generating the strong coupling between feeding and shorting lines through the slit is used at the bottom side of a mobile handset. Also, the performance of a multiple antenna system composed of three antenna elements is analyzed.

A Study on the Forward- and Reverse-Link Interrogation Range of a UHF RFID System (UHF RFID 시스템의 순방향 및 역방향 인식 거리에 관한 연구)

  • Jang, Byung-Jun;Park, Jun-Seok;Cho, Hong-Gu;Lim, Jae-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1243-1253
    • /
    • 2007
  • Recently UHF RFID system has drawn a great deal of attention because of its potential to revolutionize supply chain management. An important characterization of the performance of a RFID system is 'interrogation range', which is defined as the maximum distance between a reader and a tag. Forward-link interrogation range is defined as the maximum distance from which the tag receives just enough power to turn on and back-scatter, and reverse-tink interrogation range is the maximum distance from which the reader can detect this back-scattered signal. A link balance has to be found between the two interrogation ranges. In this paper, the interrogation range equations are formulated in both forward-link and reverse-link and a trade-off between the two values is investigated in order to maximize the interrogation range. As a result, it is observed that the gain of the reader antenna, the isolation of the circulator, and the phase noise of the local oscillator with range correlation effect mainly determine the reverse-link interrogation range.