• Title/Summary/Keyword: Performance Testing System

Search Result 1,319, Processing Time 0.031 seconds

A novel hybrid testing approach for piping systems of industrial plants

  • Bursi, Oreste S.;Abbiati, Giuseppe;Reza, Md S.
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1005-1030
    • /
    • 2014
  • The need for assessing dynamic response of typical industrial piping systems subjected to seismic loading motivated the authors to apply model reduction techniques to experimental dynamic substructuring. Initially, a better insight into the dynamic response of the emulated system was provided by means of the principal component analysis. The clear understanding of reduction basis requirements paved the way for the implementation of a number of model reduction techniques aimed at extending the applicability range of the hybrid testing technique beyond its traditional scope. Therefore, several hybrid simulations were performed on a typical full-scale industrial piping system endowed with a number of critical components, like elbows, Tee joints and bolted flange joints, ranging from operational to collapse limit states. Then, the favourable performance of the L-Stable Real-Time compatible time integrator and an effective delay compensation method were also checked throughout the testing campaign. Finally, several aspects of the piping performance were commented and conclusions drawn.

Aviation Security Equipments Certification System in Korea: Suggestions for Improvement (항공보안장비 성능인증제의 고도화 방안에 관한 연구)

  • Lee, Wonjoo;Yu, Sangwoo;Park, Soohong;Kim, Kyunghoon;Ha, Dasom;Seoll, Eunsuk;Han, Soojin;Park, Seoha;Lee, Jisu;Kim, Chanhwi;Kang, Jingu;Lee, Kiyoung
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.395-408
    • /
    • 2020
  • Purpose: This study was performed for advancement of aviation security equipments certification system. Methods: We investigated aviation security equipments certification-related registrations and the latest research trends of explosive detection technologies. Based on the literature studies, we draw the critical issues of the aviation security equipment certification system and suggested improvement direction. Results: We found some inaccuracies of the definition of explosive trace detection equipments, accreditation review committee, and performance evaluation test method. These problems should be modified to suit being practical. Conclusion: The present results would be useful for basic data for modifying aviation security equipments certification systems.

Field Feasibility Study of an Eddy Current Testing System for Steam Generator Tubes of Nuclear Power Plant (원전 증기발생기 와전류검사 시스템 현장적용 연구)

  • Moon, Gyoon-Young;Lee, Tae-Hun;Kim, In-Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Steam generator is one of the most important component of nuclear power plant, and it's integrity and reliability are to be assured to high level by pre-service inspection and in-service inspection. To improve the reliability of steam generator heat exchanger tubes and to secure the management of nuclear power plant safely, KHNP CRI recently has developed eddy current testing system for steam generator. KHNP CRI have performed a series of experimental verification and field application to confirm the performance of the developed ECT system in accordance with ASME Code requirements. The ECT system consists of a remote data acquisition unit, an ECT signal acquisition and analysis software, a water chamber robot controller and a probe push-puller. In this paper, we will details of the developed ECT system and the software and their experimental performance. And also we will report the field applying performance and the issues for further steps.

The Dynamics of Noise and Vibration Engineering Vibrant as ever, for years to come

  • Leuridan, Jan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.47-47
    • /
    • 2010
  • Over the past 20 years, constant progress in noise and vibration (NVH) engineering has enabled to constantly advance quality and comfort of operation and use of really any products - from automobiles to aircraft, to all kinds of industrial vehicles and machines - to the extend that for many products, supreme NVH performance has becomes part of its brand image in the market. At the same time, the product innovation agenda in the automotive, aircraft and really many other industries, has been extended very much in recent years by meeting ever more strict environmental regulations. Like in the automotive industry, the drive towards meeting emission and CO2 targets leads to very much accelerated adoption of new powertrain concepts (downsizing of ICE, hybrid-electrical...), and to new vehicle architectures and the application of new materials to reduce weight, which bring new challenges for not only maintaining but further improving NVH performance. This drives for innovation in NVH engineering, so as to succeed in meeting a product brand performance for NVH, while as the same time satisfying eco-constraints. Product innovation has also become increasingly dependent on the adoption of electronics and software, which drives for new solutions for NVH engineering that can be applied for NVH performance optimization of mechatronic products. Finally, relentless pressure to shorten time to market while maintaining overall product quality and reliability, mandates that the practice and solutions for NVH engineering can be optimally applied in all phases of product development. The presentation will first review the afore trends for product and process innovation, and discuss the challenges they represent for NVH engineering. Next, the presentation discusses new solutions for NVH engineering of products, so as to meet target brand values, while at the same time meeting ever more strict eco constraints, and this within a context of increasing adoption of electronics and controls to drive product innovation. NVH being very much defined by system level performance, these solutions implement the approach of "Model Based System Engineering" to increase the impact of system level analysis for NVH in all phases of product development: - At the Concept Phase, to be able to do business case analysis of new product concepts; to arrive at an optimized and robust product architecture (e.g. to hybrid powertrain lay-out, to optimize fuel economy); to enable target cascading, to subsystem and component level. - In Development Phase, to increase realism and productivity of simulation, so as to frontload virtual validation of components and subsystems and to further reduce reliance on physical testing. - During the final System Testing Phase, to enable subsystem testing by a combination of physical testing and simulation: using simulation models to simulate the final integration context when testing a subsystem, enabling to frontload subsystem testing before final system integration is possible. - To interconnect Mechanical, Electronical and Controls engineering, in all phases of development, by supporting model driven controls engineering (MIL, SIL, HIL). Finally, the presentation reviews examples of how LMS is implementing such new applications for NVH engineering with lead customers in Europe, Asia and US, with demonstrated benefits both in terms of shortening development cycles, and/or enabling a simulation based approach to reduce reliance on physical testing.

  • PDF

Analysis of a Queueing Model with a Two-stage Group-testing Policy (이단계 그룹검사를 갖는 대기행렬모형의 분석)

  • Won Seok Yang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.53-60
    • /
    • 2022
  • In a group-testing method, instead of testing a sample, for example, blood individually, a batch of samples are pooled and tested simultaneously. If the pooled test is positive (or defective), each sample is tested individually. However, if negative (or good), the test is terminated at one pooled test because all samples in the batch are negative. This paper considers a queueing system with a two-stage group-testing policy. Samples arrive at the system according to a Poisson process. The system has a single server which starts a two-stage group test in a batch whenever the number of samples in the system reaches exactly a predetermined size. In the first stage, samples are pooled and tested simultaneously. If the pooled test is negative, the test is terminated. However, if positive, the samples are divided into two equally sized subgroups and each subgroup is applied to a group test in the second stage, respectively. The server performs pooled tests and individual tests sequentially. The testing time of a sample and a batch follow general distributions, respectively. In this paper, we derive the steady-state probability generating function of the system size at an arbitrary time, applying a bulk queuing model. In addition, we present queuing performance metrics such as the offered load, output rate, allowable input rate, and mean waiting time. In numerical examples with various prevalence rates, we show that the second-stage group-testing system can be more efficient than a one-stage group-testing system or an individual-testing system in terms of the allowable input rates and the waiting time. The two-stage group-testing system considered in this paper is very simple, so it is expected to be applicable in the field of COVID-19.

Development of Simulator for Performance Test of Electric Power Steering of Light Weight Vehicle (경차용 전동조향장치의 성능평가를 위한 시뮬레이터의 개발)

  • Hahn, Chang-Su;Rhee, Meung-Ho;Park, Ho;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.923-929
    • /
    • 2001
  • Steering system is most important for vehicle in safety and driving feel. However, testing using real car to improve steering feel is often difficult in aspect to repeatability, safety and money. Repeatability in testing steering system is very important because steering feel for driver is variable according to the environment condition. And steering testing of vehicle is so dangerous that driver may not concentrate in testing. In this paper, the steering system simulator using front part of steering and suspension system was developed. We can test the electric power steering system for the light weight vehicle using this simulator cheap, safely and repeatably.

Preliminary Design of GBAS Onboard Test Equipment

  • Jeong, Myeong-Sook;Ko, Wan-Jin;Bae, Joong Won;Jun, Hyang Sig
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • When the ground subsystem of Ground Based Augmentation System(GBAS) is installed at the airport, the functions and performance of subsystem should be evaluated through ground and flight testing at the pre-commissioning phase. In the case of GBAS flight testing, it can be conducted by the existing flight check aircraft, but the GBAS ground testing requires the development of specially customized equipment to perform the ground testing. Therefore, this paper describes the preliminary design of GBAS onboard test equipment which can be independently used for the GBAS ground testing and flight testing on a car and an aircraft.

Surge Immunity Performance Enhancement Techniques on Battery Management System (전지관리장치(BMS)의 서지내성 성능향상 기법)

  • Kim, Young-Sung;Rim, Seong-Jeong;Seo, Woohyun;Jung, Jeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.196-200
    • /
    • 2015
  • The switching noise in the power electronics of the power conversion equipment (Power Conditioning System) for large energy storage devices are generated. Since the burst-level transient noise from being generated in the power system at a higher power change process influences the control circuit of the low voltage driver circuit. Noise may cause the malfunction of the control device even if no dielectric breakdown leads to a control circuit. To overcome this, this paper proposes the installation of an additional nano-surge protection device on the power supply DC output circuit of the battery management unit.

A Study on Test Working of Signalling System (신호시스템 시운전 시험 연구)

  • 정의진;황종규;이종우
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.157-163
    • /
    • 2000
  • Testing evaluation is a part of process for design, production, evaluation, operation and abolition, and is the process of certifying system performance. The main purpose of testing evaluation is to reduce the risk factor under the determining process. Testing process has the three step such as design qualification, integration and validation test in factory, system integration and commissioning test. Design Qualification is to verify errors on the design process. Integration and validation test in factory is for the H/W and S/W of an equipment and is to verify interface of subsystem, communication protocol and main functions. System integration and commissioning test is a functional test to adjust successful installation of equipment. According to the testing process, briefly consideration for test item, test method and test contents about signalling system is carried out.

  • PDF

Test Witness Methodology for Acquisition of the Composite Material Qualification Data (복합재 재료인증을 위한 시험입회 방법론)

  • Rhee, Seung Yun
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.8-11
    • /
    • 2015
  • Since the late 1990's, FAA, NASA and the aerospace industry have worked together to develop the sharing system of the composite material qualification databases which were obtained through the standardized fabrication and testing procedures. The result was what is now known as the AGATE(Advanced General Aviation Transport Experiments) or NCAMP(National Center for Advanced Materials Performance) methodology, a more cost-effective concept that shifts the major responsibility for qualification and testing from the aircraft manufacturer to the material supplier. The properties of composite materials are largely dependent on the testing as well as the raw material properties and the manufacturing process including the process control parameters. Thus it is important in the composite material qualification to comply with the standardized testing procedures. In this paper, I will describe the standardized witness methodologies of certification engineers to reduce the effect of testing variability within the qualification data.