Silicene is an emerging two-dimensional (2D) semiconductor material which has been envisaged to be compatible with conventional silicon technology. This paper presents a theoretical study of uniformly doped silicene with aluminium (AlSi3) Field-Effect Transistor (FET) along with the benchmark of device performance metrics with other 2D materials. The simulations are carried out by employing nearest neighbour tight-binding approach and top-of-the-barrier ballistic nanotransistor model. Further investigations on the effects of the operating temperature and oxide thickness to the device performance metrics of AlSi3 FET are also discussed. The simulation results demonstrate that the proposed AlSi3 FET can achieve on-to-off current ratio up to the order of seven and subthreshold swing of 67.6 mV/dec within the ballistic performance limit at room temperature. The simulation results of AlSi3 FET are benchmarked with FETs based on other competitive 2D materials such as silicene, graphene, phosphorene and molybdenum disulphide.
Machine learning (ML) models based on artificial neural network (ANN) and decision tree (DT) were developed for estimation of axial capacity of concrete columns reinforced with fiber reinforced polymer (FRP) bars. Between the design codes, the Canadian code provides better formulation compared to the Australian or American code. For empirical models based on elastic modulus of FRP, Hadhood et al. (2017) model performed best. Whereas for empirical models based on tensile strength of FRP, as well as all empirical models, Raza et al. (2021) was adjudged superior. However, compared to the empirical models, all ML models exhibited superior performance according to all five performance metrics considered. The performance of ANN and DT models were comparable in general. Under the present setup, inclusion of the transverse reinforcement information did not improve the accuracy of estimation with either ANN or DT. With selective use of inputs, and a much simpler ANN architecture (4-3-1) compared to that reported in literature (Raza et al. 2020: 6-11-11-1), marginal improvement in correlation could be achieved. The metrics for the best model from the study was a correlation of 0.94, absolute errors between 420 kN to 530 kN, and the range being 0.39 to 0.51 for relative errors. Though much superior performance could be obtained using ANN/DT models over empirical models, further work towards improving accuracy of the estimation is indicated before design of FRP reinforced concrete columns using ML may be considered for design codes.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.6
/
pp.79-86
/
2009
In this paper, it has the performance metrics and the utility evaluation of the collusion codes about multimedia fingerprinting code based on BIBD and then the tracing algorithm of all colluders is proposed. Among the collusion codes, the bit stream of "all 0" or "all 1" are generated, also same collusion code and bit reversed code with user's fingerprinting code are generated. Thus there was occurred some problems, in which a colluder is deciding to anti-colluder or anti-colluder is deciding to colluder. In this paper, for the performance metrics and the utility evaluation of the collude codes, the experiment onto the total solution is processed by the logical collusion operation added with a partially processed averaging attack in the past papers. The proposed performance metrics and the utility evaluation about the collusion code generated from multimedia fingerprinting code based on BIBD is operated. Through the experiment, it confirmed that the ratio of colluder tracing is 100%.
In image processing and computer vision fields, mean squared error (MSE) has popularly been used as an objective metric in image quality optimization problems due to its desirable mathematical properties such as metricability, differentiability and convexity. However, as known that MSE is not highly correlated with perceived visual quality, much effort has been made to develop new image quality assessment (IQA) metrics having both the desirable mathematical properties aforementioned and high prediction performances for subjective visual quality scores. Although recent IQA metrics having the desirable mathematical properties have shown to give some promising results in prediction performance for visual quality scores, they also have high computation complexities. In order to alleviate this problem, we propose a new fast IQA metric using a simple Laplace operator. Since the Laplace operator used in our IQA metric can not only effectively mimic operations of receptive fields in retina for luminance stimulus but also be simply computed, our IQA metric can yield both very fast processing speed and high prediction performance. In order to verify the effectiveness of the proposed IQA metric, our method is compared to some state-of-the-art IQA metrics. The experimental results showed that the proposed IQA metric has the fastest running speed compared the IQA methods except MSE under comparison. Moreover, our IQA metric achieves the best prediction performance for subjective image quality scores among the state-of-the-art IQA metrics under test.
Jae Han Cho;Jae Min Park;Tae Hyeop Kim;Seung Wook Lee;Jiyeon Kim
Smart Media Journal
/
v.12
no.2
/
pp.66-75
/
2023
Recently, the number of cloud web applications is increasing owing to the accelerated migration of enterprises and public sector information systems to the cloud. Traditional network attacks on cloud web applications are characterized by Denial of Service (DoS) attacks, which consume network resources with a large number of packets. However, HTTP DoS attacks, which consume application resources, are also increasing recently; as such, developing security technologies to prevent them is necessary. In particular, since low-bandwidth HTTP DoS attacks do not consume network resources, they are difficult to identify using traditional security solutions that monitor network metrics. In this paper, we propose a new detection model for detecting HTTP DoS attacks on cloud web applications by collecting the application metrics of web servers and learning them using machine learning. We collected 18 types of application metrics from an Apache web server and used five machine learning and two deep learning models to train the collected data. Further, we confirmed the superiority of the application metrics-based machine learning model by collecting and training 6 additional network metrics and comparing their performance with the proposed models. Among HTTP DoS attacks, we injected the RUDY and HULK attacks, which are low- and high-bandwidth attacks, respectively. As a result of detecting these two attacks using the proposed model, we found out that the F1 scores of the application metrics-based machine learning model were about 0.3 and 0.1 higher than that of the network metrics-based model, respectively.
JSTS:Journal of Semiconductor Technology and Science
/
v.11
no.3
/
pp.169-181
/
2011
In this present paper, a comprehensive drain current model incorporating the effects of channel length modulation has been presented for multi-layered gate material engineered trapezoidal recessed channel (MLGME-TRC) MOSFET and the expression for linearity performance metrics, i.e. higher order transconductance coefficients: $g_{m1}$, $g_{m2}$, $g_{m3}$, and figure-of-merit (FOM) metrics; $V_{IP2}$, $V_{IP3}$, IIP3 and 1-dB compression point, has been obtained. It is shown that, the incorporation of multi-layered architecture on gate material engineered trapezoidal recessed channel (GME-TRC) MOSFET leads to improved linearity performance in comparison to its conventional counterparts trapezoidal recessed channel (TRC) and rectangular recessed channel (RRC) MOSFETs, proving its efficiency for low-noise applications and future ULSI production. The impact of various structural parameters such as variation of work function, substrate doping and source/drain junction depth ($X_j$) or negative junction depth (NJD) have been examined for GME-TRC MOSFET and compared its effectiveness with MLGME-TRC MOSFET. The results obtained from proposed model are verified with simulated and experimental results. A good agreement between the results is obtained, thus validating the model.
Ho-Van, Khuong;Sofotasios, Paschalis C.;Freear, Steven
Journal of Communications and Networks
/
v.16
no.1
/
pp.10-17
/
2014
This work investigates two important performance metrics of underlay cooperative cognitive radio (CR) networks: Interference cumulative distribution function of licensed users and outage probability of unlicensed users. These metrics are thoroughly analyzed in realistic operating conditions such as imperfect fading channel information and strict transmit power constraint, which satisfies interference power constraint and maximum transmit power constraint, over Nakagami-m fading channels. Novel closed-form expressions are derived and subsequently validated extensively through comparisons with respective results from computer simulations. The proposed expressions are rather long but straightforward to handle both analytically and numerically since they are expressed in terms of well known built-in functions. In addition, the offered results provide the following technical insights: i) Channel information imperfection degrades considerably the performance of both unlicensed network in terms of OP and licensed network in terms of interference levels; ii) underlay cooperative CR networks experience the outage saturation phenomenon; iii) the probability that the interference power constraint is satisfied is relatively low and depends significantly on the corresponding fading severity conditions as well as the channel estimation quality; iv) there exists a critical performance trade-off between unlicensed and licensed networks.
In an attempt to develop comprehensive evidence-based methods for evaluation of the R&D performance of cross-disciplinary projects, a joint bibliometric analysis of patents and publications was performed for two industry-university-government collaborative projects aimed at commercialization: Hokkaido University Research & Business Park Project (2003-2007; 63 inventors; 176 patents; 853 papers), and Matching Program for Innovations in Future Drug Discovery and Medical Care - phase I (2006-2010; 46 inventors; 235 patents; 733 papers). Besides the simple output indicators (for five years period), and citations (from the publication date to the end of 2012), science maps based on the network analysis of words and co-authorship relations were generated to identify the prominent research themes and teams. Our joint analysis of publications and patents yields objective and mutually complementing information, which provides better insights on research and commercialization performance of the large-scale projects. Hence, such analysis has potential for use in the industry-university project's performance evaluation.
Journal of Advanced Marine Engineering and Technology
/
v.39
no.6
/
pp.656-661
/
2015
The goal of this paper is to analyze the performance of a word autocomplete system for mobile devices such as smartphones, tablets, and PCs. The proposed system automatically completes a partially typed string into a full word, reducing the time and effort required by a user to enter text on these devices. We collect a large amount of data from Twitter and develop both unigram and bigram dictionaries based on the frequency of words. Using these dictionaries, we analyze the performance of the word autocomplete system and devise a keystroke profit rate and recovery rate as new evaluation metrics that better describe the characteristics of the word autocomplete problem compared to previous measures such as the mean reciprocal rank or recall.
Traditional service-level agreements (SLAs), defined by average delay or packet loss, often camouflage the instantaneous performance perceived by end-users. We define a set of metrics for service availability to quantify the performance of Internet protocol (IP) backbone networks and capture the impact of routing dynamics on packet forwarding. Given a network topology and its link weights, we propose a novel technique to compute the associated service availability by taking into account transient routing dynamics and operational conditions, such as border gateway protocol (BGP) table size and traffic distributions. Even though there are numerous models for characterizing topologies, none of them provide insights on the expected performance perceived by end customers. Our simulations show that the amount of service disruption experienced by similar networks (i.e., with similar intrinsic properties such as average out-degree or network diameter) could be significantly different, making it imperative to use new metrics for characterizing networks. In the second part of the paper, we derive goodness factors based on service availability viewed from three perspectives: Ingress node (from one node to many destinations), link (traffic traversing a link), and network-wide (across all source-destination pairs). We show how goodness factors can be used in various applications and describe our numerical results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.