• Title/Summary/Keyword: Performance Evaluations

Search Result 906, Processing Time 0.028 seconds

A study on the Quality Assessment Method on Railway Video Transmission System (철도영상전송시스템의 화질평가방안에 관한 연구)

  • Chang Seok-Gahk;Cho Bong-Kwan
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1247-1252
    • /
    • 2004
  • A objective quality assessment for the evaluation performance of a video transmission system as a basic step for construction of digital video transmission system between the spots and headquarter. Due to a limit of an analog video transmission system and the developments of various digital media and digital video standards, the need of introduce of a digital system are increased gradual1y, At this points. previously performance evaluations are performed and the quality assessment is the most important thing. We can be divided quality assessment method by the subjective quality assessment and objective quality assessment. The subjective quality assessment method has some problems which are required high cost and much time to evaluate the quality, And because existing objective quality assessment method such that PSNR are based on an analog form, the correlation with subjective data is very low. Therefore we design a new objective quality assessment method using Gabor wavelet transform reflecting HVS(Human Visual System), Designed objective quality assessment method is superior to other objective method such that PSNR or EPSNR In this paper, we proposed objective quality assessment using Gabor wavelet can be used for performance evaluation and verification of video transmission system.

  • PDF

Two-Level Tries: A General Acceleration Structure for Parallel Routing Table Accesses

  • Mingche, Lai;Lei, Gao
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The stringent performance requirement for the high efficiency of routing protocols on the Internet can be satisfied by exploiting the threaded border gateway protocol (TBGP) on multi-cores, but the state-of-the-art TBGP performance is restricted by a mass of contentions when racing to access the routing table. To this end, the highly-efficient parallel access approach appears to be a promising solution to achieve ultra-high route processing speed. This study proposes a general routing table structure consisting of two-level tries for fast parallel access, and it presents a heuristic-based divide-and-recombine algorithm to solve a mass of contentions, thereby accelerating the parallel route updates of multi-threading and boosting the TBGP performance. As a projected TBGP, this study also modifies the table operations such as insert and lookup, and validates their correctness according to the behaviors of the traditional routing table. Our evaluations on a dual quad-core Xeon server show that the parallel access contentions decrease sharply by 92.5% versus the traditional routing table, and the maximal update time of a thread is reduced by 56.8 % on average with little overhead. The convergence time of update messages are improved by 49.7%.

Performance Evaluation of a Two-Stage Compression Heat Pump System for District Heating (지역난방용 2단 압축 히트펌프 시스템 성능평가)

  • Park, Cha-Sik;Cha, Dong-An;Kwon, Oh-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.585-590
    • /
    • 2012
  • The objective of this study is to investigate the performance of a two-stage compression heat pump system for district heating. The experimental setup of heat pump consists of compressor, condenser, evaporator, expansion device, intercooler, flash tank, oil separator and accumulator. The experimental evaluations on the two-stage compression cycle were carried out under various operating conditions which were heat source temperature, the degree of compressor inlet superheat, and intermediate pressure. The temperature ranges of unutilized energy as the heat source were used in the test conditions. As the heat source temperature increased from $10^{\circ}C$ to $30^{\circ}C$, the COP and heating capacity of the heat pump system increased by 22.6% and 45.8%, respectively. The performance of the two-stage heat pump system increased by 5.2% with the variation of the intermediate pressure in the same heat source temperature conditions.

Performance Relation Analysis of CLR, Buffer Capacity and Delay Time in the ATM Access Node (ATM 접속노드에서 셀 손실율과 버퍼용량 및 지연시간의 상관관계 분석)

  • 이하철;이병섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.945-950
    • /
    • 2002
  • In this paper the performance evaluations on Asynchronous Transfer Mode(ATM) access node are performed in the ATM access network which consists of access node and channel. The performance factors of access node are Cell Loss Ratio(CLR), buffer capacity and delay time. Both the ATM cell-scale queueing model and burst-scale queueing model are considered as the traffic model of access node for various traffic types such as Constant Bit Rate(CBR), Variable Bit Rate(VBR) and random traffic in the ATM access networks. Based on these situations, the relation of CLR, buffer capacity and delay time is analyzed in the ATM access node.

Study on Seismic Performance of RC Column with Super-Flexibility Membrane (고연성재 보강 철근콘크리트 기둥의 내진성능 연구)

  • Lee, Weon-Cheol;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.1-12
    • /
    • 2013
  • This study presents the evaluations of seismic performance and displacement ductility for two types of RC columns: existing RC column without SFM (Super Flexibility Membrane) and CSF (RC columns strengthened with SFM). After they are analyzed by the experiment as well as FEM, crack patterns and load-displacement curve of CSF by the former are shown to similar to those of CSF by the latter. The flexural cracks are dominant in CSF, whereas shear cracks in CNF (existing RC column without SFM). Displacement ductility of CSF is shown significantly to increase as well as ultimate displacement, compared to those of CNF. Therefore CSF can be replaced to CNF in order to increase the seismic performance and displacement ductility.

A Study on the Development of Plugging Margin Evaluation Method Reflected the Fouling of a Shell-and-Tube Heat Exchanger (다관원통형 열교환기의 파울링 현상을 고려한 관막음 여유 평가법 개발 연구)

  • Hwang, Kyeong-Mo;Jin,Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1384-1389
    • /
    • 2004
  • As operating time of heat exchangers progresses, fouling generated by water-borne deposits and the number of plugged tubes increase and thermal performance decreases. Both fouling and tube plugging are known to interfere with normal flow characteristics and to reduce thermal efficiencies of heat exchangers. The heat exchangers of domestic nuclear power plants have been analyzed in terms of the heat flux and heat transfer coefficient at test conditions as a means of heat exchanger management. Except for the fouling level generated in operation of heat exchangers, also, all of the tubes of heat exchangers have been replaced when the number of plugged tubes exceeds the plugging criteria based on design performance sheet. This paper describes the plugging margin evaluation mettled reflected the fouling of shell-and-tube heat exchangers, which can evaluate the thermal performance for heat exchangers, estimate the future fouling variations, and reflect the current fouling level. To identify the effectiveness of the developed method, the fouling and plugging margin evaluations were performed for a component cooling heat exchanger in a nuclear power plant.

An Intelligent Residual Resource Monitoring Scheme in Cloud Computing Environments

  • Lim, JongBeom;Yu, HeonChang;Gil, Joon-Min
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1480-1493
    • /
    • 2018
  • Recently, computational intelligence has received a lot of attention from researchers due to its potential applications to artificial intelligence. In computer science, computational intelligence refers to a machine's ability to learn how to compete various tasks, such as making observations or carrying out experiments. We adopted a computational intelligence solution to monitoring residual resources in cloud computing environments. The proposed residual resource monitoring scheme periodically monitors the cloud-based host machines, so that the post migration performance of a virtual machine is as consistent with the pre-migration performance as possible. To this end, we use a novel similarity measure to find the best target host to migrate a virtual machine to. The design of the proposed residual resource monitoring scheme helps maintain the quality of service and service level agreement during the migration. We carried out a number of experimental evaluations to demonstrate the effectiveness of the proposed residual resource monitoring scheme. Our results show that the proposed scheme intelligently measures the similarities between virtual machines in cloud computing environments without causing performance degradation, whilst preserving the quality of service and service level agreement.

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

Experimental Test and Performance Evaluation of Mid-Range Automotive Radar Systems Using 2D FFT ROI (2D FFT ROI를 이용한 중단거리 차량용 레이더의성능 시험 및 평가)

  • Jonghun, Lee;Youngseok, Jin;Seoungeon, Song;Seokjun, Ko
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this paper, we developed a mid-range automotive radar systems based on the performance requirements and test procedures of the intelligent transport systems, that is lane change decision aid systems (LCDAS). The mid-range automotive radar has the maximum detection range up to 80m and an update time within 50ms. The computational loads of a signal processing were reduced by using ROI preprocessing technique. Considering actual driving environments, radar performance evaluations were conducted in two driving scenarios at an automotive proving ground.

A Study of the Combinatorial Interpolation Algorithm for Scaler Hardware Design (스케일러 하드웨어 설계를 위한 조합 보간 알고리즘의 연구)

  • Si-Yeon Han;Bong-Soon Kang
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.296-302
    • /
    • 2023
  • As Multimedia industry has evolved, it has become possible to display resolutions in various formats. Therefore, the performance of a scaler algorithm that converts resolutions while maintaining high quality and its hardware implementation are important. Considering the hardware design of an image up/down scaler, this paper proposes a combinatorial scaler algorithm that uses modified bilinear interpolation in the vertical direction and bicubic interpolation in the horizontal direction to reduce the line memory burden. Through quantitative and qualitative evaluations, this paper compared the performance of the proposed algorithm with three other well-known algorithms, and also compared the hardware burden of its hardware implementation. This paper used a sinusoidal signal and eight typical images for performance evaluation.