• Title/Summary/Keyword: Performance Criterion

Search Result 1,187, Processing Time 0.025 seconds

A Study for Vehicle Dynamic Analysis and Test of Airport Railroad (공항철도 차량 동특성 해석 및 시험에 관한 연구)

  • Yang, Hee-Joo;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.188-193
    • /
    • 2007
  • Airport railroad have required maximum design speed 120km/h and wind speed 50m/s condition as design item of airport railroad vehicles. To design and manufacture the vehicle satisfying these conditions, it must carry out the dynamic behaviors analysis such as hunting stability, ride comfort derailment ratio, unloading ratio and lateral force to meet the criterion described in Urban Railroad Act. Dynamic behaviors of vehicle have carried out using the multi-body dynamics simulation program(VAMPIRE). This paper presents the evaluation methods and criterion used to verify dynamic performance of airport railroad vehicle, and show the analysis results of vehicle dynamic simulation and the test results for vibration and ride comfort measured on running performance tests. As a results, each analysis results and test results meet the criterion described in Urban Railroad Act.

  • PDF

Comparative Study on the Rock Failure Criteria Taking Account of the Intermediate Principal Stress (중간주응력을 고려한 선형 및 비선형 암석파괴조건식의 비교 고찰)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.12-21
    • /
    • 2012
  • Although the Mohr-Coulomb and Hoek-Brown failure criteria have been adopted widely in rock mechanics, they neglect the ${\sigma}_2$ effect. The result of true triaxial tests on rock samples, however, reveals that the ${\sigma}_2$ effect on strength of rocks is considerable, so that rock failure criteria taking into account the influence of ${\sigma}_2$ are necessary for the precise stability evaluation of rock structures. In this study, a new nonlinear 3-D failure criterion has been suggested by combining the Hoek-Brown criterion with the smooth octahedral shape function taken from Jiang & Pietruszczak (1988). The performance of the new criterion was assessed by comparing the strength predictions from both the suggested criterion and the corresponding linear 3-D criterion. The resulting fit of the new criterion to the true triaxial test data for six rock types taken from the literature shows that the criterion fits the experimental data very well. Furthermore, for the data sets having data taken in the low ${\sigma}_3$ range, the nonlinear failure criterion works better than the linear criterion.

An Adaptive Bit-reduced Mean Absolute Difference Criterion for Block-Matching Algorithm and Its VlSI Implementation (블럭 정합 알고리즘을 위한 적응적 비트 축소 MAD 정합 기준과 VLSI 구현)

  • Oh, Hwang-Seok;Baek, Yun-Ju;Lee, Heung-Kyu
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.543-550
    • /
    • 2000
  • An adaptive bit-reduced mean absolute difference (ABRMAD) is presented as a criterion for the block-matching algorithm (BMA) to reduce the complexity of the VLSI Implementation and to improve the processing time. The ABRMAD uses the lower pixel resolution of the significant bits instead of full resolution pixel values to estimate the motion vector (MV) by examining the pixels Ina block. Simulation results show that the 4-bit ABRMAD has competitive mean square error (MSE)results and a half less hardware complexity than the MAD criterion, It has also better characteristics in terms of both MSE performance and hardware complexity than the Minimax criterion and has better MSE performance than the difference pixel counting(DPC), binary block-matching with edge-map(BBME), and bit-plane matching(BPM) with the same number of bits.

  • PDF

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion

  • Chen, Zexiang;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.445-454
    • /
    • 2020
  • Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm (WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using frequencies and mode shapes, a new objective function on the SDI problem is formulated by weighting both modal data and flexibility assurance criterion. Then, the WOA method, due to its good performance of fast convergence and global searching ability, is adopted to provide an accurate solution to the SDI problem, different predator mechanisms are formulated and their probability thresholds are selected. Finally, the performance of the proposed method is assessed by numerical simulations on a simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem.

Blind Equalization based on Maximum Cross-Correntropy Criterion using a Set of Randomly Generated Symbol (랜덤 심볼을 사용한 최대 코렌트로피 기준의 블라인드 등화)

  • Kim, Nam-Yong;Kang, Sung-Jin;Hong, Dae-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.33-39
    • /
    • 2010
  • Correntropy is a generalized correlation function that contains higher order moments of the probability density function (PDF) than the conventional moment expansions. The criterion maximizing cross-correntropy (MCC) of two different random variables has yielded superior performance particularly in nonlinear, non-Gaussian signal processing comparing to mean squared error criterion. In this paper we propose a new blind equalization algorithm based on cross-correntropy criterion which uses, as two variables, equalizer output PDF and Parzen PDF estimate of a set of randomly generated symbols that complies with the transmitted symbol PDF. The performance of the proposed algorithm based on MCC is compared with the Euclidian distance minimization.

A Basic Study of Development of Post-disaster Refugees Housing Performance Index (재난대응 구호주거 성능지표 개발을 위한 기초연구)

  • Nam, Hye-Ryeong;Lee, Won-Hak;Kang, Su-Min;Kim, Sung-Tae;Cho, Young-Jun;Lee, Byung-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.744-754
    • /
    • 2017
  • In this study, an analytic hierarchy process (AHP) was conducted with the aim of developing a post-disaster refugee housing performance index system (PPS) to improve the post-disaster refugee housing (PRH) performance criteria for the foundation of quality-based development. The PRH was defined as a mid-term temporary housing facility that is used for a certain period before the permanent housing is established. The safety, rapidity, reusability, habitability, and economy were derived from major performance factors through prior research. A hierarchical PPS was organized by linking the major performance factors with the whole life cycle process of PRH. The priority of each performance index of PPS was determined quantitatively using the analytic hierarchy process through an expert survey. Based on AHP analysis, the performance criterion of the total weight 1-10 ranking and the performance criterion of the first rank in each category were classified into the essential performance criterion (must be achieved) and the others were classified into the recommended performance criterion (optional achieved) and the performance index was constructed considering all stages of PRH development. With the completion of the PRH performance index, it is expected that victims will be able to secure stable residence and return to their daily lives quickly.

The new criterion on performance-based design and application to recent earthquake codes

  • Azer A. Kasimzade;Emin Nematli;Mehmet Kuruoglu
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2023
  • "Performance-based design (PBD)" is based on designing a structure with choosing a performance target under design criteria to increase the structure's resistance against earthquake effect. The plastic hinge formation is determined as one of the fundamental data in finite elements nonlinear analysis to distinguish the condition of the structure where more significant potential damage could occur. If the number of plastic hinges in the structure is increased, the total horizontal load capability of the structure is increased, also. Theoretically, when the number of plastic hinges of the plane frame structure reaches "the degree of hyperstaticity plus one", the structure will reach the capability of the largest ultimate horizontal load. As the number of plastic hinges to be formed in the structure increases towards the theoretical plastic hinge number (TPHN), the total horizontal load capability of the structure increases, proportionally. In the previous studies of the authors, the features of examining the new performance criteria were revealed and it was formulated as follows "Increase the total number of plastic hinges to be formed in the structure to the number of theoretical plastic hinges as much as possible and keep the structure below its targeted performance with related codes". With this new performance criterion, it has been shown that the total lateral load capability of the building is higher than the total lateral load capability obtained with the traditional PBD method by the FEMA 440 and FEMA 356 design guides. In this study, PBD analysis results of structures with frame carrier systems are presented in the light of the Turkey Building Earthquake Code 2019. As a result of this study, it has been shown that the load capability of the structure in the examples of structures with frame carrier system increases by using this new performance criterion presented, compared to the results of the examination with the traditional PBD method in TBEC 2019.

A Study on Feature Selection for kNN Classifier using Document Frequency and Collection Frequency (문헌빈도와 장서빈도를 이용한 kNN 분류기의 자질선정에 관한 연구)

  • Lee, Yong-Gu
    • Journal of Korean Library and Information Science Society
    • /
    • v.44 no.1
    • /
    • pp.27-47
    • /
    • 2013
  • This study investigated the classification performance of a kNN classifier using the feature selection methods based on document frequency(DF) and collection frequency(CF). The results of the experiments, which used HKIB-20000 data, were as follows. First, the feature selection methods that used high-frequency terms and removed low-frequency terms by the CF criterion achieved better classification performance than those using the DF criterion. Second, neither DF nor CF methods performed well when low-frequency terms were selected first in the feature selection process. Last, combining CF and DF criteria did not result in better classification performance than using the single feature selection criterion of DF or CF.

A New Design Method for T-S Fuzzy Controller with Pole Placement Constraints

  • Joh, Joongseon;Jeung, Eun-Tae;Chung, Won-Jee;Kwon, Sung-Ha
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.72-80
    • /
    • 1997
  • A new design method for Takagi-Sugeno (T-S in short) fuzzy controller which guarantees global asymptotic stability and satisfies a desired performance is proposed in this paper. The method uses LMI(Linear Matrix Inequality) approach to find the common symmetric positive definite matrix P and feedback fains K/sub i/, i= 1, 2,..., r, numerically. The LMIs for stability criterion which treats P and K'/sub i/s as matrix variables is derived from Wang et al.'s stability criterion. Wang et al.'s stability criterion is nonlinear MIs since P and K'/sub i/s are coupled together. The desired performance is represented as $ LMIs which place the closed-loop poles of $ local subsystems within the desired region in s-plane. By solving the stability LMIs and pole placement constraint LMIs simultaneously, the feedback gains K'/sub i/s which gurarntee global asymptotic stability and satisfy the desired performance are determined. The design method is verified by designing a T-S fuzzy controller for an inverted pendulum with a cart using the proposed method.

  • PDF

New DC-suppression Method of Modulation Codes for High Density Optical Recording Systems (고밀도 광 기록 장치를 위한 변조 코드의 새로운 직류 성분 제거 방법)

  • Lee, Joo-Hyun;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.13-17
    • /
    • 2002
  • For elimination DC component, the optical recording systems generally exploit WRDS (word-end running digital sum) criterion. However, its performance is degraded if the lengths of the control bits and codewords are increased. Another criterion is MSW (mean-square weight) method. Whereas MSW criterion has the complexity, this hs optimal performance. In this paper, we have proposed a new dc-component suppression method (MPRDS, minimum peak RDS) of the modulation codes for high density optical recording system. This method requires less complexity than MSW's, and the performance is near to MSW's even if the lengths of the control bits and codewords are increased.