• 제목/요약/키워드: Performance Accuracy

검색결과 8,252건 처리시간 0.044초

텍스트 마이닝과 딥러닝을 활용한 암호화폐 가격 예측 : 한국과 미국시장 비교 (The Prediction of Cryptocurrency on Using Text Mining and Deep Learning Techniques : Comparison of Korean and USA Market)

  • 원종관;홍태호
    • 지식경영연구
    • /
    • 제22권2호
    • /
    • pp.1-17
    • /
    • 2021
  • 본 연구에서는 한국과 미국의 대표적인 거래소인 빗썸과 코인베이스의 비트코인 가격을 ARIMA와 순환 신경망(Recurrent Neural Network)을 이용해 예측하고, 이후 각 국가의 뉴스 기사를 이용해 분리 학습에 기반한 separated RNN 모형을 제안한다. separated RNN 모형은 학습 데이터를 가격의 추세 변화 점을 기준으로 분리해 학습시킨 후, 추세 변화점 별 뉴스 데이터를 활용해 용어 기반 사전을 구축한다. 이후 용어 기반 사전과 평가 데이터 기간의 뉴스 데이터를 이용해 예측할 데이터의 가격 추세 변화 점을 찾아낸 후, 매칭되는 모형을 적용해 예측 결과를 산출한다. 2017년 5월 22일부터 2020년 9월 16일까지의 가격 데이터를 사용해 분석한 결과, 제안된 separated RNN을 이용해 예측한 결과가 한국과 미국의 비트코인 가격 예측 모두에서 순환 신경망(RNN)을 이용해 예측한 결과보다 높은 예측 성과를 보였다. 본 연구는 시계열 예측 기법의 한계를 뉴스 데이터를 이용한 추세 변화 점 탐색을 통해 극복할 수 있고, 성과 향상을 위한 추후 다양한 시계열 예측 기법 및 추세 변화 점 탐색을 위한 다양한 텍스트 마이닝 기법을 적용해볼 필요가 있음을 시사한다.

해양플랜트 플로트오버 설치 공법용 수동형 갑판 지지 프레임의 최소중량설계와 민감도 평가를 위한 실험계획법 응용 (Application of Experimental Design Methods for Minimum Weight Design and Sensitivity Evaluation of Passive-Type Deck Support Frame for Offshore Plant Float-Over Installation)

  • 김훈관;이강수;송창용
    • 해양환경안전학회지
    • /
    • 제27권1호
    • /
    • pp.161-171
    • /
    • 2021
  • 본 연구에서는 20,000 톤급 해양플랜트 상부구조물(Topside)의 플로트오버 설치작업을 위해 개발된 수동형 갑판 지지 프레임(Deck support frame)의 구조설계에 대해 다양한 실험계획법을 이용한 최소중량설계와 민감도 평가의 비교연구를 수행하였다. 수동형 갑판 지지 프레임의 주요 구조부재의 두께 치수 변수는 설계인자로 고려하였고, 응답치는 중량과 강도성능으로 선정하였다. 최소중량설계와 민감도 평가의 비교연구에 사용한 실험계획법은 직교배열설계법, Box-Behnken 설계법, 그리고 Latin hypercube 설계법이다. 실험계획법의 설계공간 탐색의 근사화 성능을 평가하기 위해 반응표면법을 각 실험계획법 별로 생성하여 근사화 정확도 특성을 검토하였다. 또한 최소중량설계를 위해 최상 설계안의 결과로 부터 실험계획법의 특성에 따른 수치계산 비용, 중량감소 효과 등을 평가하였다. 수동형 갑판 지지 프레임의 구조설계에 대해 Box-Behnken 설계법이 가장 적합한 설계 결과를 나타내었다.

Out-of-Vocabulary 단어에 강건한 병렬 Tri-LSTM 문장 임베딩을 이용한 감정분석 (Sentiment Analysis using Robust Parallel Tri-LSTM Sentence Embedding in Out-of-Vocabulary Word)

  • 이현영;강승식
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.16-24
    • /
    • 2021
  • word2vec 등 기존의 단어 임베딩 기법은 원시 말뭉치에 출현한 단어들만을 대상으로 각 단어를 다차원 실수 벡터 공간에 고정된 길이의 벡터로 표현하기 때문에 형태론적으로 풍부한 표현체계를 가진 언어에 대한 단어 임베딩 기법에서는 말뭉치에 출현하지 않은 단어들에 대한 단어 벡터를 표현할 때 OOV(out-of-vocabulary) 문제가 빈번하게 발생한다. 문장을 구성하는 단어 벡터들로부터 문장 벡터를 구성하는 문장 임베딩의 경우에도 OOV 단어가 포함되었을 때 문장 벡터를 정교하게 구성하지 못하는 문제점이 있다. 특히, 교착어인 한국어는 어휘형태소와 문법형태소가 결합되는 형태론적 특성 때문에 미등록어의 임베딩 기법은 성능 향상의 중요한 요인이다. 본 연구에서는 단어의 형태학적인 정보를 이용하는 방식을 문장 수준으로 확장하고 OOV 단어 문제에 강건한 병렬 Tri-LSTM 문장 임베딩을 제안한다. 한국어 감정 분석 말뭉치에 대해 성능 평가를 수행한 결과 한국어 문장 임베딩을 위한 임베딩 단위는 형태소 단위보다 문자 단위가 우수한 성능을 보였으며, 병렬 양방향 Tri-LSTM 문장 인코더는 86.17%의 감정 분석 정확도를 달성하였다.

GC-FID를 이용한 조제유류 중 지방산 분석법 개선 연구 (Improvement of Analysis Methods for Fatty Acids in Infant Formula by Gas Chromatography Flame-Ionization Detector)

  • 황금희;최원희;허수정;이혜영;황경미
    • 한국식품위생안전성학회지
    • /
    • 제36권1호
    • /
    • pp.34-41
    • /
    • 2021
  • 본 연구는 조제유류 중 지방산에 대해 최신 분석법을 마련하고자 수행하였다. 조제유류 중 지방산 함량 분석을 위해 GC를 이용한 분석법을 확립하고 시중에 유통 중인 제품을 대상으로 적용성을 검토하였다. 분석법 검증은 특이성, 직선성, 검출한계 및 정량한계, 정확성, 정밀성에 대해 수행되었다. Linoleic acid 및 α-linolenic acid의 0.1-5 mg/mL 농도범위에서 R2=0.999 이상의 우수한 직선성을 확인할 수 있었다. Linoleic acid 및 α-linolenic acid의 LOD는 각각 0.06 mg/mL, 0.01 mg/mL, LOQ는 각각 0.16 mg/mL, 0.03 mg/mL였다. 표준인증물질 분석을 통해 정확성을 검토하였으며, linoleic acid 및 α-linolenic acid의 회수율은 각각 100.8%와 101.1%로 확인하였다. 정밀성을 검토한 결과 시료 채취량에 따른 반복성은 linoleic acid 1.4-2.9%, α-linolenic acid 1.1-2.7%이었고, 실험실간 재현성은 각각 2.8%, 1.5%임을 확인하였다. 본 연구에서 확립된 분석법을 적용하여 국내 유통 중인 조제유류 및 조제식 제품 12건에 대해 적용성 검토를 실시한 결과 전체 시료에서 분석이 용이하였으며, 모두 기준·규격에 적합함을 확인하였다. 본 결과로부터 확립된 GC를 이용한 분석법은 조제유류 중 지방산 함량을 확인하기에 적합함을 확인하였으며 국내 식품 영양성분의 관리 기반을 강화하는데 기여할 것으로 사료된다.

사용자 참여형 웨어러블 디바이스 데이터 전송 연계 및 딥러닝 대사증후군 예측 모델 (Deep Learning Algorithm and Prediction Model Associated with Data Transmission of User-Participating Wearable Devices)

  • 이현식;이웅재;정태경
    • 한국산업정보학회논문지
    • /
    • 제25권6호
    • /
    • pp.33-45
    • /
    • 2020
  • 본 논문은 최근 다양한 종류의 웨어러블 디바이스가 헬스케어 도메인에 급증하여 사용되고 있는 상황에서 최신 첨단 기술이 실제 메디컬 환경에서 개인의 질병예측이라는 관점을 바라본다. 사용자 참여형 웨어러블 디바이스를 통하여 임상 데이터와 유전자 데이터, 라이프 로그 데이터를 병합하여 데이터를 수집, 처리, 전송하는 과정을 걸쳐 딥뉴럴 네트워크의 환경에서 학습모델의 제시와 피드백 모델을 연결하는 과정을 제시한다. 이러한 첨단 의료 현장에서 일어나는 메디컬 IT의 임상시험 절차를 걸친 실제 현장의 경우 대사 증후군에 의한 특정 유전자가 질병에 미치는 영향을 측정과 더불어 임상 정보와 라이프 로그 데이터를 병합하여 서로 각기 다른 이종 데이터를 처리하면서 질병의 특이점을 확인하게 된다. 즉, 이종 데이터의 딥뉴럴 네트워크의 객관적 적합성과 확실성을 증빙하게 되고 이를 통한 실제 딥러닝 환경에서의 노이즈에 따른 성능 평가를 실시한다. 이를 통해 자동 인코더의 경우의 1,000 EPOCH당 변화하는 정확도와 예측치가 변수의 증가 값에 수차례 선형적으로 변화하는 현상을 증명하였다.

시간과 공간적 특성에 따른 축구 패스 성공률 분석: 2018 러시아 월드컵 대회 자료를 중심으로 (Influences on Time and Spatial Characteristics of Soccer Pass Success Rate: A Case Study of the 2018 World Cup in Russia)

  • 이승훈;김영훈
    • 디지털융복합연구
    • /
    • 제19권1호
    • /
    • pp.475-483
    • /
    • 2021
  • 이 연구는 2018 FIFA 러시아 월드컵 영상자료에서 수집한 2차 가공 데이터와 공식기록을 비교 및 활용하여 패스 정확도의 시간적, 공간적 특성을 규명 하는데 목적이 있었다. 이를 위해 총 128경기를 대상으로 경기결과, 패스 시간, 패스 위치에 따른 패스성공률을 반복측정 이원변량분석을 활용해 검증했다. 연구결과 승패 집단 간 패스성공률의 차이는 나타나지 않았으며, 패스시간 및 위치에 대한 상호작용효과도 발견되지 않았다. 패스시간에 따른 패스성공률은 전반전이 후반전에 비해 높게나왔으며, 15~30분 지점인 전반 중반(79.2%)과 60~75분 지점인 후반 중반(77.9%)에서 가장 높은 성공률을 보였다. 패스지역에 따른 패스성공률은 수비-미드필드지역(83.9%), 미드필드-공격지역(81.7%), 수비지역(70.6%), 공격지역(61.1%)순으로 나타났다. 결론적으로 월드컵 경기의 상대적 경쟁의 강도가 높은 특성에 따라 승패 팀의 패스성공률의 차이가 나타나지 않았다고 판단되며, 향후 다양한 매개변수를 적용해 승패 요소 보다는 경기내용 자체를 분석하기 위한 후속 연구가 필요하다.

다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가 (Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning)

  • 손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제36권6_3호
    • /
    • pp.1711-1720
    • /
    • 2020
  • 최근 급속한 산업화와 도시화로 인해 인위적으로 발생하는 미세먼지(Particulate matter, PM)는 기상 조건에 따라 이동 및 분산되면서 피부와 호흡기 등 인체에 악영향을 미친다. 본 연구는 기상인자를 multiple linear regression(MLR), support vector machine(SVM), 그리고 random forest(RF) 모델의 입력자료로 하여 서울시 PM10 농도를 예측하고, 모델 간 성능을 비교 평가하는데 그 목적을 둔다. 먼저 서울시에 소재한 39개소 대기오염측정망(air quality monitoring sites, AQMS)에서 관측된 PM10 농도 자료를 8:2 비율로 구분하여 모델 훈련과 검증 데이터셋으로 사용되었다. 또한 기상관측소(automatic weather system, AWS)에서 관측되고 있는 자료 중 9개 기상인자(평균기온, 최고기온, 최저기온, 일 강수량, 평균풍속, 최대순간풍속, 최대순간풍속풍향, 황사발생유무, 상대습도)가 모델의 입력자료로 선정되었다. 각 AQMS에서 관측된 PM10 농도와 MLR, SVM, 그리고 RF 모델에 의해 예측된 PM10 농도 간 결정계수(R2)는 각각 0.260, 0.772, 그리고 0.793이었고, RF 모델이 PM10 농도 예측에 가장 높은 성능을 나타냈다. 특히 모델 검증에 사용되는 AQMS 중 관악구와 강남대로 AQMS는 상대적으로 AWS에 가까워 SVM과 RF 모델에서 높은 정확도를 나타냈다. 종로구 AQMS는 AWS에서 비교적 멀리 떨어져 있지만, 인접한 두 AQMS 데이터가 모델 학습에 사용되었기 때문에 두 모델에서 높은 정확도를 나타냈다. 반면 용산구 AQMS는 AQMS 및 AWS에서 비교적 멀리 떨어져 있기에 두 모델의 성능이 낮게 나타냈다.

고기동 환경에 적용 가능한 소형 GPS/MEMS IMU 통합항법 수신모듈 설계 (Design of a Compact GPS/MEMS IMU Integrated Navigation Receiver Module for High Dynamic Environment)

  • 정구용;박대영;김성민;이종혁
    • 한국항행학회논문지
    • /
    • 제25권1호
    • /
    • pp.68-77
    • /
    • 2021
  • 본 논문에서는 높은 동특성 환경에서 동작이 가능한 GPS/MEMS IMU 통합항법 수신모듈을 설계 및 제작하고, 그 결과를 확인하였다. 설계한 모듈은 RF 수신부, 관성측정부, 신호처리부, 상관기, 항법 S/W로 구성된다. RF 수신부는 저잡음증폭, 주파수 변환, 필터링, 자동이득조절 기능을 수행하고, 관성측정부는 3축 자이로스코프, 가속도계, 지자기센서가 적용된 MEMS급 IMU로부터 측정 데이터를 수집하여 항법S/W로 전달하는 인터페이스를 제공한다. 신호처리부 및 상관기는 FPGA 로직으로 구현하여 필터링 및 상관 값 계산을 수행하고, FPGA 내부 CPU를 사용하여 위성항법, 통합항법 S/W를 구현하였다. 제작된 모듈의 크기는 95.0 × 85.0 × 12.5 mm 이고, 무게는 110g을 확인하였으며, 동적성능 1200m/s, 가속도 10g의 환경에서 규격 이내의 항법정확도 성능을 확인하였다.

MLP 기반의 서울시 3차원 지반공간모델링 연구 (MLP-based 3D Geotechnical Layer Mapping Using Borehole Database in Seoul, South Korea)

  • 지윤수;김한샘;이문교;조형익;선창국
    • 한국지반공학회논문집
    • /
    • 제37권5호
    • /
    • pp.47-63
    • /
    • 2021
  • 최근 디지털 트윈 관점의 3차원 지하공간 지도의 수요 및 유관분야의 연계 활용 요구가 증대되고 있다. 그러나 전국단위의 지반조사 자료의 방대함과 이를 활용함에 있어 공간적/추계학적 기법 적용의 불확실성으로 인해 신뢰도 높은 지역적 지반특성화 연구와 그에 따른 최적화 모델 제시에 어려움이 있다. 따라서 본 연구에서는 서울지역 3차원 지하공간의 공학적 지층분류를 위해 다층 퍼셉트론(MLP) 기반의 최적 학습모델을 구축하였다. 먼저, 서울지역에 분포하는 시추공별 층상구조 및 3차원 공간좌표를 표준화 서식에 따라 지반정보 데이터베이스로 구축하고 기계학습을 위한 결측치 보정, 정규화 등의 데이터 전처리를 하였다. MLP 모델의 파라미터 최적화와 정밀도 및 정확도 관련 모델 성능 평가를 통해 최적의 피팅 모델을 설계하였다. 이후 3차원 지반 공간레이어 구축을 위한 수치표고모델 기반 격자망을 구성하고, 단위격자별 MLP기반 예측모델 적용을 통한 층상구조를 결정하고 이를 가시화하였다. 구축된 3차원 지반모델은 범용적인 지구통계학적 공간보간 기법의 적용 결과 및 지질도의 표토층 성상과 비교하여 그 성능을 평가하였다.

심장비대증 환자의 흉부 X선 영상에 대한 Inception V3 알고리즘의 분류 성능평가 (Evaluation of Classification Performance of Inception V3 Algorithm for Chest X-ray Images of Patients with Cardiomegaly)

  • 정우연;김정훈;박지은;김민정;이종민
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.455-461
    • /
    • 2021
  • 심장비대증은 흉부 X선 영상에서 흔히 보이는 질병 중 하나이지만 조기에 발견을 하지 못하면 심각한 합병증을 유발할 수도 있다. 이러한 점을 고려하여 최근에는 여러 과학기술 분야의 발전으로 인공지능을 이용한 딥러닝 알고리즘을 의료에 접목시키는 영상 분석 연구들이 많이 진행되고 있다. 본 논문에서는 Inception V3 딥러닝 모델을 흉부 X선 영상을 이용하여 심장비대증의 분류에 유용한 모델인지 평가하고자 한다. 사용된 영상의 경우 총 1026장의 경북대학교병원 내 정상 심장 진단을 받은 환자와 심장비대증 진단을 받은 환자의 흉부 X선 영상을 사용하였다. 실험결과 Inception V3 딥러닝 모델의 심장비대증 유무에 따른 분류 정확도와 손실도 결과값은 각각 96.0%, 0.22%의 결과값을 나타내었다. 연구결과를 통해 Inception V3 딥러닝 모델은 흉부 영상 데이터의 특징 추출 및 분류에 있어 우수한 딥러닝 모델인 것을 알 수 있었다. Inception V3 딥러닝 모델의 경우 흉부 질환의 분류에 있어 유용한 딥러닝 모델이 될 것으로 판단되며 조금 더 다양한 의료 영상 데이터를 이용한 연구를 진행하여 이와 같은 우수한 연구결과를 얻게 된다면 향후 임상의의 진단 시 많은 도움을 줄 수 있을 것으로 사료된다.