본 연구에서는 한국과 미국의 대표적인 거래소인 빗썸과 코인베이스의 비트코인 가격을 ARIMA와 순환 신경망(Recurrent Neural Network)을 이용해 예측하고, 이후 각 국가의 뉴스 기사를 이용해 분리 학습에 기반한 separated RNN 모형을 제안한다. separated RNN 모형은 학습 데이터를 가격의 추세 변화 점을 기준으로 분리해 학습시킨 후, 추세 변화점 별 뉴스 데이터를 활용해 용어 기반 사전을 구축한다. 이후 용어 기반 사전과 평가 데이터 기간의 뉴스 데이터를 이용해 예측할 데이터의 가격 추세 변화 점을 찾아낸 후, 매칭되는 모형을 적용해 예측 결과를 산출한다. 2017년 5월 22일부터 2020년 9월 16일까지의 가격 데이터를 사용해 분석한 결과, 제안된 separated RNN을 이용해 예측한 결과가 한국과 미국의 비트코인 가격 예측 모두에서 순환 신경망(RNN)을 이용해 예측한 결과보다 높은 예측 성과를 보였다. 본 연구는 시계열 예측 기법의 한계를 뉴스 데이터를 이용한 추세 변화 점 탐색을 통해 극복할 수 있고, 성과 향상을 위한 추후 다양한 시계열 예측 기법 및 추세 변화 점 탐색을 위한 다양한 텍스트 마이닝 기법을 적용해볼 필요가 있음을 시사한다.
본 연구에서는 20,000 톤급 해양플랜트 상부구조물(Topside)의 플로트오버 설치작업을 위해 개발된 수동형 갑판 지지 프레임(Deck support frame)의 구조설계에 대해 다양한 실험계획법을 이용한 최소중량설계와 민감도 평가의 비교연구를 수행하였다. 수동형 갑판 지지 프레임의 주요 구조부재의 두께 치수 변수는 설계인자로 고려하였고, 응답치는 중량과 강도성능으로 선정하였다. 최소중량설계와 민감도 평가의 비교연구에 사용한 실험계획법은 직교배열설계법, Box-Behnken 설계법, 그리고 Latin hypercube 설계법이다. 실험계획법의 설계공간 탐색의 근사화 성능을 평가하기 위해 반응표면법을 각 실험계획법 별로 생성하여 근사화 정확도 특성을 검토하였다. 또한 최소중량설계를 위해 최상 설계안의 결과로 부터 실험계획법의 특성에 따른 수치계산 비용, 중량감소 효과 등을 평가하였다. 수동형 갑판 지지 프레임의 구조설계에 대해 Box-Behnken 설계법이 가장 적합한 설계 결과를 나타내었다.
word2vec 등 기존의 단어 임베딩 기법은 원시 말뭉치에 출현한 단어들만을 대상으로 각 단어를 다차원 실수 벡터 공간에 고정된 길이의 벡터로 표현하기 때문에 형태론적으로 풍부한 표현체계를 가진 언어에 대한 단어 임베딩 기법에서는 말뭉치에 출현하지 않은 단어들에 대한 단어 벡터를 표현할 때 OOV(out-of-vocabulary) 문제가 빈번하게 발생한다. 문장을 구성하는 단어 벡터들로부터 문장 벡터를 구성하는 문장 임베딩의 경우에도 OOV 단어가 포함되었을 때 문장 벡터를 정교하게 구성하지 못하는 문제점이 있다. 특히, 교착어인 한국어는 어휘형태소와 문법형태소가 결합되는 형태론적 특성 때문에 미등록어의 임베딩 기법은 성능 향상의 중요한 요인이다. 본 연구에서는 단어의 형태학적인 정보를 이용하는 방식을 문장 수준으로 확장하고 OOV 단어 문제에 강건한 병렬 Tri-LSTM 문장 임베딩을 제안한다. 한국어 감정 분석 말뭉치에 대해 성능 평가를 수행한 결과 한국어 문장 임베딩을 위한 임베딩 단위는 형태소 단위보다 문자 단위가 우수한 성능을 보였으며, 병렬 양방향 Tri-LSTM 문장 인코더는 86.17%의 감정 분석 정확도를 달성하였다.
본 연구는 조제유류 중 지방산에 대해 최신 분석법을 마련하고자 수행하였다. 조제유류 중 지방산 함량 분석을 위해 GC를 이용한 분석법을 확립하고 시중에 유통 중인 제품을 대상으로 적용성을 검토하였다. 분석법 검증은 특이성, 직선성, 검출한계 및 정량한계, 정확성, 정밀성에 대해 수행되었다. Linoleic acid 및 α-linolenic acid의 0.1-5 mg/mL 농도범위에서 R2=0.999 이상의 우수한 직선성을 확인할 수 있었다. Linoleic acid 및 α-linolenic acid의 LOD는 각각 0.06 mg/mL, 0.01 mg/mL, LOQ는 각각 0.16 mg/mL, 0.03 mg/mL였다. 표준인증물질 분석을 통해 정확성을 검토하였으며, linoleic acid 및 α-linolenic acid의 회수율은 각각 100.8%와 101.1%로 확인하였다. 정밀성을 검토한 결과 시료 채취량에 따른 반복성은 linoleic acid 1.4-2.9%, α-linolenic acid 1.1-2.7%이었고, 실험실간 재현성은 각각 2.8%, 1.5%임을 확인하였다. 본 연구에서 확립된 분석법을 적용하여 국내 유통 중인 조제유류 및 조제식 제품 12건에 대해 적용성 검토를 실시한 결과 전체 시료에서 분석이 용이하였으며, 모두 기준·규격에 적합함을 확인하였다. 본 결과로부터 확립된 GC를 이용한 분석법은 조제유류 중 지방산 함량을 확인하기에 적합함을 확인하였으며 국내 식품 영양성분의 관리 기반을 강화하는데 기여할 것으로 사료된다.
본 논문은 최근 다양한 종류의 웨어러블 디바이스가 헬스케어 도메인에 급증하여 사용되고 있는 상황에서 최신 첨단 기술이 실제 메디컬 환경에서 개인의 질병예측이라는 관점을 바라본다. 사용자 참여형 웨어러블 디바이스를 통하여 임상 데이터와 유전자 데이터, 라이프 로그 데이터를 병합하여 데이터를 수집, 처리, 전송하는 과정을 걸쳐 딥뉴럴 네트워크의 환경에서 학습모델의 제시와 피드백 모델을 연결하는 과정을 제시한다. 이러한 첨단 의료 현장에서 일어나는 메디컬 IT의 임상시험 절차를 걸친 실제 현장의 경우 대사 증후군에 의한 특정 유전자가 질병에 미치는 영향을 측정과 더불어 임상 정보와 라이프 로그 데이터를 병합하여 서로 각기 다른 이종 데이터를 처리하면서 질병의 특이점을 확인하게 된다. 즉, 이종 데이터의 딥뉴럴 네트워크의 객관적 적합성과 확실성을 증빙하게 되고 이를 통한 실제 딥러닝 환경에서의 노이즈에 따른 성능 평가를 실시한다. 이를 통해 자동 인코더의 경우의 1,000 EPOCH당 변화하는 정확도와 예측치가 변수의 증가 값에 수차례 선형적으로 변화하는 현상을 증명하였다.
이 연구는 2018 FIFA 러시아 월드컵 영상자료에서 수집한 2차 가공 데이터와 공식기록을 비교 및 활용하여 패스 정확도의 시간적, 공간적 특성을 규명 하는데 목적이 있었다. 이를 위해 총 128경기를 대상으로 경기결과, 패스 시간, 패스 위치에 따른 패스성공률을 반복측정 이원변량분석을 활용해 검증했다. 연구결과 승패 집단 간 패스성공률의 차이는 나타나지 않았으며, 패스시간 및 위치에 대한 상호작용효과도 발견되지 않았다. 패스시간에 따른 패스성공률은 전반전이 후반전에 비해 높게나왔으며, 15~30분 지점인 전반 중반(79.2%)과 60~75분 지점인 후반 중반(77.9%)에서 가장 높은 성공률을 보였다. 패스지역에 따른 패스성공률은 수비-미드필드지역(83.9%), 미드필드-공격지역(81.7%), 수비지역(70.6%), 공격지역(61.1%)순으로 나타났다. 결론적으로 월드컵 경기의 상대적 경쟁의 강도가 높은 특성에 따라 승패 팀의 패스성공률의 차이가 나타나지 않았다고 판단되며, 향후 다양한 매개변수를 적용해 승패 요소 보다는 경기내용 자체를 분석하기 위한 후속 연구가 필요하다.
최근 급속한 산업화와 도시화로 인해 인위적으로 발생하는 미세먼지(Particulate matter, PM)는 기상 조건에 따라 이동 및 분산되면서 피부와 호흡기 등 인체에 악영향을 미친다. 본 연구는 기상인자를 multiple linear regression(MLR), support vector machine(SVM), 그리고 random forest(RF) 모델의 입력자료로 하여 서울시 PM10 농도를 예측하고, 모델 간 성능을 비교 평가하는데 그 목적을 둔다. 먼저 서울시에 소재한 39개소 대기오염측정망(air quality monitoring sites, AQMS)에서 관측된 PM10 농도 자료를 8:2 비율로 구분하여 모델 훈련과 검증 데이터셋으로 사용되었다. 또한 기상관측소(automatic weather system, AWS)에서 관측되고 있는 자료 중 9개 기상인자(평균기온, 최고기온, 최저기온, 일 강수량, 평균풍속, 최대순간풍속, 최대순간풍속풍향, 황사발생유무, 상대습도)가 모델의 입력자료로 선정되었다. 각 AQMS에서 관측된 PM10 농도와 MLR, SVM, 그리고 RF 모델에 의해 예측된 PM10 농도 간 결정계수(R2)는 각각 0.260, 0.772, 그리고 0.793이었고, RF 모델이 PM10 농도 예측에 가장 높은 성능을 나타냈다. 특히 모델 검증에 사용되는 AQMS 중 관악구와 강남대로 AQMS는 상대적으로 AWS에 가까워 SVM과 RF 모델에서 높은 정확도를 나타냈다. 종로구 AQMS는 AWS에서 비교적 멀리 떨어져 있지만, 인접한 두 AQMS 데이터가 모델 학습에 사용되었기 때문에 두 모델에서 높은 정확도를 나타냈다. 반면 용산구 AQMS는 AQMS 및 AWS에서 비교적 멀리 떨어져 있기에 두 모델의 성능이 낮게 나타냈다.
본 논문에서는 높은 동특성 환경에서 동작이 가능한 GPS/MEMS IMU 통합항법 수신모듈을 설계 및 제작하고, 그 결과를 확인하였다. 설계한 모듈은 RF 수신부, 관성측정부, 신호처리부, 상관기, 항법 S/W로 구성된다. RF 수신부는 저잡음증폭, 주파수 변환, 필터링, 자동이득조절 기능을 수행하고, 관성측정부는 3축 자이로스코프, 가속도계, 지자기센서가 적용된 MEMS급 IMU로부터 측정 데이터를 수집하여 항법S/W로 전달하는 인터페이스를 제공한다. 신호처리부 및 상관기는 FPGA 로직으로 구현하여 필터링 및 상관 값 계산을 수행하고, FPGA 내부 CPU를 사용하여 위성항법, 통합항법 S/W를 구현하였다. 제작된 모듈의 크기는 95.0 × 85.0 × 12.5 mm 이고, 무게는 110g을 확인하였으며, 동적성능 1200m/s, 가속도 10g의 환경에서 규격 이내의 항법정확도 성능을 확인하였다.
최근 디지털 트윈 관점의 3차원 지하공간 지도의 수요 및 유관분야의 연계 활용 요구가 증대되고 있다. 그러나 전국단위의 지반조사 자료의 방대함과 이를 활용함에 있어 공간적/추계학적 기법 적용의 불확실성으로 인해 신뢰도 높은 지역적 지반특성화 연구와 그에 따른 최적화 모델 제시에 어려움이 있다. 따라서 본 연구에서는 서울지역 3차원 지하공간의 공학적 지층분류를 위해 다층 퍼셉트론(MLP) 기반의 최적 학습모델을 구축하였다. 먼저, 서울지역에 분포하는 시추공별 층상구조 및 3차원 공간좌표를 표준화 서식에 따라 지반정보 데이터베이스로 구축하고 기계학습을 위한 결측치 보정, 정규화 등의 데이터 전처리를 하였다. MLP 모델의 파라미터 최적화와 정밀도 및 정확도 관련 모델 성능 평가를 통해 최적의 피팅 모델을 설계하였다. 이후 3차원 지반 공간레이어 구축을 위한 수치표고모델 기반 격자망을 구성하고, 단위격자별 MLP기반 예측모델 적용을 통한 층상구조를 결정하고 이를 가시화하였다. 구축된 3차원 지반모델은 범용적인 지구통계학적 공간보간 기법의 적용 결과 및 지질도의 표토층 성상과 비교하여 그 성능을 평가하였다.
심장비대증은 흉부 X선 영상에서 흔히 보이는 질병 중 하나이지만 조기에 발견을 하지 못하면 심각한 합병증을 유발할 수도 있다. 이러한 점을 고려하여 최근에는 여러 과학기술 분야의 발전으로 인공지능을 이용한 딥러닝 알고리즘을 의료에 접목시키는 영상 분석 연구들이 많이 진행되고 있다. 본 논문에서는 Inception V3 딥러닝 모델을 흉부 X선 영상을 이용하여 심장비대증의 분류에 유용한 모델인지 평가하고자 한다. 사용된 영상의 경우 총 1026장의 경북대학교병원 내 정상 심장 진단을 받은 환자와 심장비대증 진단을 받은 환자의 흉부 X선 영상을 사용하였다. 실험결과 Inception V3 딥러닝 모델의 심장비대증 유무에 따른 분류 정확도와 손실도 결과값은 각각 96.0%, 0.22%의 결과값을 나타내었다. 연구결과를 통해 Inception V3 딥러닝 모델은 흉부 영상 데이터의 특징 추출 및 분류에 있어 우수한 딥러닝 모델인 것을 알 수 있었다. Inception V3 딥러닝 모델의 경우 흉부 질환의 분류에 있어 유용한 딥러닝 모델이 될 것으로 판단되며 조금 더 다양한 의료 영상 데이터를 이용한 연구를 진행하여 이와 같은 우수한 연구결과를 얻게 된다면 향후 임상의의 진단 시 많은 도움을 줄 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.