• Title/Summary/Keyword: Perforated caisson breakwater

Search Result 20, Processing Time 0.02 seconds

Wave Reflection from Partially Perforated Wall Caisson Breakwater

  • K. D. Suh;Park, W. S.;Lee, D. S.
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.176-183
    • /
    • 1996
  • In order to reduce wave reflection from a breakwater, a perforated wall caisson is often used. A conventional perforated wall caisson breakwater for which the water depth inside the wave chamber is the same as that on the rubble mound berm has less weight than a vertical solid caisson with the same width and moreover the weight is concentrated on the rear side of the caisson. (omitted)

  • PDF

Experimental Study on Hydraulic Performance of Perforated Caisson Breakwater with Turning Wave Blocks (회파블록케이슨 방파제의 수리학적 성능에 관한 실험적 연구)

  • Kim, In-Chul;Park, Ki-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • Recently, a perforated caisson breakwater with turning wave blocks was developed to improve the water affinity and public safety of a rubble mound armored by TTP. In this study, hydraulic model tests were performed to examine the hydraulic performance of a non-porous caisson and new caisson breakwater with perforated blocks for attacking waves in a small fishery harbor near Busan. The model test results showed that the new caisson was more effective in dissipating the wave energy under normal wave conditions and in reducing the wave overtopping rates under design wave conditions than the non-porous caisson. It was found that the horizontal wave forces acting on the perforated caisson were slightly larger than those on the non-porous caisson because of the impulsive forces on the caisson with the turning wave blocks.

Influence of Wave Chamber Slab on Wave Pressure on First and Second Wall of Perforated Caisson Breakwater (유수실 상부 덮개가 유공 케이슨 방파제의 전면벽 및 후면벽 파압에 미치는 영향)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young-Min;Jang, Se-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2317-2328
    • /
    • 2013
  • In this study, the effect of wave chamber slab on wave pressure along the first and second wall of the perforated caisson breakwater was investigated by performing physical experiment. The experiment was performed without and with the wave chamber slab of the perforated caisson by varying the front wall porosity. The discrepancy in magnitudes of the measured wave pressure along the both walls of the perforated caisson was apparent according to the existence of the wave chamber slab as significantly greater pressures were acquired for all the test cases when the wave chamber was closed upward by the slab. As a result, the magnitudes of the total wave force calculated by integration of the measured wave pressure also were much larger for the caisson breakwater having the wave chamber slab, exceeding the value based on the well known Takahashi's formula (Takahashi and Shimosako, 1994). With respect to the porosity of the front wall, meanwhile, higher pressures were obtained with a larger porosity, at both the first and second wall of the breakwater.

Three-dimensional Simulation of Wave Reflection and Pressure Acting on Circular Perforated Caisson Breakwater by OLAFOAM (OLAFOAM에 기초한 원형유공케이슨 방파제의 반사율 및 작용파압에 관한 3차원시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;Kim, Sang-Gi;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.286-304
    • /
    • 2017
  • In this study, we proposed a new-type of circular perforated caisson breakwater consisting of a bundle of latticed blocks that can be applied to a small port such as a fishing port, and numerically investigated the hydraulic characteristics of the breakwater. The numerical method used in this study is OLAFOAM which newly added wave generation module, porous media analysis module and reflected wave control module based on OpenFOAM that is open source CFD software published under the GPL license. To investigate the applicability of OLAFOAM, the variations of wave pressure acting on the three-dimensional slit caisson were compared to the previous experimental results under the regular wave conditions, and then the performance for irregular waves was examined from the reproducibility of the target irregular waves and frequency spectrum analysis. As a result, a series of numerical simulations for the new-type of circular perforated caisson breakwaters, which is similar to slit caisson breakwater, was carried out under the irregular wave actions. The hydraulic characteristics of the breakwater such as wave overtopping, reflection, and wave pressure distribution were carefully investigated respect to the significant wave height and period, the wave chamber width, and the interconnectivity between them. The numerical results revealed that the wave pressure acting on the new-type of circular perforated caisson breakwaters was considerably smaller than the result of the impermeable vertical wall computed by the Goda equation. Also, the reflection of the new-type caisson breakwater was similar to the variation range of the reflection coefficient of the existing slit caisson breakwater.

Comparison of Maximum Horizontal Wave Force Acting on Perforated Caisson Breakwater with Single and Double Chamber (단일 및 이중유수실 유공케이슨 방파제에 작용하는 최대 수평파력 비교)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young Min;Jang, Se-Chul;Lee, Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.335-341
    • /
    • 2014
  • Physical experiments were carried out to measure the wave force on the vertical walls of perforated breakwater considering several phases of a wave acting on the breakwater. The maximum horizontal wave force acting on each vertical wall was compared between single and double chamber caisson breakwater. The experimental data in this study showed that the total horizontal wave force for double chamber caisson was 9.6% smaller on average than that for single chamber caisson when the total chamber width was the same for both caissons. Such reduction of the wave force is due to the dissipation of wave energy at the porous middle wall, which is located between the porous front wall and non-porous rear wall.

Application of a Regular Wave Model to Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters (불규칙파의 유공 케이슨 방파제로부터의 반사율 산정시 규칙파 모델 적용)

  • Suh Kyung Duck;Son Sang Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.205-208
    • /
    • 2002
  • Numerous studies have been performed to develop an analytical model that can predict the reflection of regular or irregular waves from a perforated-wall caisson breakwater. Though such irregular wave models as Suh et at. (2001) become available, regular wave models are still in extensive use because of their simplicity. In the present study, using the regular wave model of Fuggazza and Natale(1992), the reflection of irregular waves from a perforated-wall caisson breakwater was calculated in several different methods. First, the regular wave model was re-validated by the hydraulic model tests. Though the model somewhat over-predicted the reflection coefficients at larger values and under-predicted them at smaller values, overall agreement was pretty good between calculation and measurement. Then, the regular wave model was applied to calculate the irregular wave reflection in the experiments of Suh et at.(2001) and Bennett et al. (1992). In applying the regular wave model to irregular wave reflection, several different methods were used. The results showed that it is the most reasonable to use the regular wave model repeatedly for each frequency component of the irregular wave specuum with the root-mean-squared wave height for all the frequencies .

  • PDF

Load & Resistance Factors Calibration for Sliding and Overturning Limit State Design of Perforated Caisson Breakwater (유공케이슨 방파제 활동 및 전도 한계상태설계를 위한 하중저항계수 보정)

  • Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.458-464
    • /
    • 2020
  • Calibration of load-resistance factors for the limit state design of perforated caisson breakwaters are presented. Reliability analysis of 12 breakwaters in nationwide ports was conducted. Then, partial safety factors and load-resistance factors were sequentially calculated according to target reliability index. Load resistance factors were optimized to give one set of factor for limit state design of breakwater. The breakwaters were redesigned by using the optimal load resistance factor and verified whether reliability indices larger than the target value. Finally, some load-resistance factors were proposed by changing target reliability index.

Calculation of Expected Sliding Distance of Wave Dissipating Caisson Breakwater (소파케이슨 방파제의 기대활동량 산정)

  • Kim, Dong-Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.213-220
    • /
    • 2005
  • An approach to calculate expected sliding distance of wave dissipating caisson breakwater is proposed. Time history of dynamic wave pressure for the calculation of sliding distance is made by extending conventional static wave pressure developed for the wave dissipating caisson breakwater. Construction of impact wave and standing wave was done by using duration time and maximum wave pressures of themselves. In the numerical analysis, the sliding distance for an attack of single wave and expected sliding distance for 50 years of wave dissipating breakwater by proposed method were compared with those by conventional method for uplift caisson breakwater. It was found that the sliding distance of wave dissipating breakwater by the proposed method is smaller than by conventional method.

An Experimental Investigation for Hydraulic Characteristics of Solid and Perforated-wall Caissons of a Mixed Type Breakwater (혼성방파제의 무공 및 유공 케이슨의 수리특성에 관한 실험)

  • 서경덕;오영민;전인식;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.243-249
    • /
    • 1992
  • Hydraulic experiments were carried out to investigate the hydraulic characteristics of solid and perforated-wall caissons of a mixed type breakwater for regular waves of various heights and periods. It was found that a perforated-wall caisson is more advantageous than a solid caisson for such hydraulic characteristics as reflection. transmission, and runup at the front face of the caissons and that the experimental results agree reasonably well with existing theoretical or empirical relationships. Especially the reflection coefficient of a perforated-wall caisson. mainly governed by the resonance in the wave chamber, was found to be minimum when the width of the wave chamber is approximately a quarter of the wave length in the wave chamber.

  • PDF

Wave Reflection from Partialy Perforated Caisson Breakwater (부분 유공 케이슨 방파제로부터의 파의 반사)

  • Suh, Kyung-Doug
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.3
    • /
    • pp.221-230
    • /
    • 1996
  • The Suh and Park's analytical model. originally developed to calculate wave reflection from a conventional fully perforated caisson breakwater, is applied to a partially perforated caisson breakwater by approximating the vertical wall of the lower part of the front face of the caisson as a very steep sloping wall. Also, in the model, the inertial resistance term at the perforated wall is modified by using the blockage coefficient proposed by Kakuno and Liu. The model is compared against the hydraulic experimental data reported by Park et al. in 1993. Both the experimental data and the analytical model results show that the influence of inertial resistance is important so that wave reflection becomes minimum when B/L. is approximately 0.2 (in which R : wave chamber width, and 1, : wave length inside the wave chamber), which is somewhat smaller than the theoretical value B/L, : 0.25 obtained by assuming that the influence of inertial resistance is negligible. It is also shown that the analytical model based on a linear wave theory tends to overpredict the reflection coefficient as the wave nonlinearity increases, thus the model is preferably to be used for ordinary waves of small steepness.

  • PDF