DOI QR코드

DOI QR Code

Influence of Wave Chamber Slab on Wave Pressure on First and Second Wall of Perforated Caisson Breakwater

유수실 상부 덮개가 유공 케이슨 방파제의 전면벽 및 후면벽 파압에 미치는 영향

  • Received : 2013.06.11
  • Accepted : 2013.09.17
  • Published : 2013.11.30

Abstract

In this study, the effect of wave chamber slab on wave pressure along the first and second wall of the perforated caisson breakwater was investigated by performing physical experiment. The experiment was performed without and with the wave chamber slab of the perforated caisson by varying the front wall porosity. The discrepancy in magnitudes of the measured wave pressure along the both walls of the perforated caisson was apparent according to the existence of the wave chamber slab as significantly greater pressures were acquired for all the test cases when the wave chamber was closed upward by the slab. As a result, the magnitudes of the total wave force calculated by integration of the measured wave pressure also were much larger for the caisson breakwater having the wave chamber slab, exceeding the value based on the well known Takahashi's formula (Takahashi and Shimosako, 1994). With respect to the porosity of the front wall, meanwhile, higher pressures were obtained with a larger porosity, at both the first and second wall of the breakwater.

이 연구에서는 수리모형실험을 통해 유수실 상부 덮개가 유공 케이슨 방파제 전면벽 및 후면벽에서의 파압에 미치는 영향을 고찰하였다. 수리모형실험은 유공 케이슨의 유수실 상부 덮개가 있는 경우 및 없는 경우에 대해서 전면벽 유공률을 변화시키면서 이루어졌다. 유수실 상부가 덮개로 막혀 있을 때에는 모든 실험 조건에서 유의미하게 더 큰 파압이 취득되었으며 따라서 유수실 상부 덮개 존재에 따른 두 벽에서의 계측 파압 차이는 매우 뚜렷하게 나타났다. 그 결과 계측 파압을 적분하여 계산된 전파력의 크기 역시 상부 덮개가 있는 케이슨 방파제의 경우가 더 컸으며, 이 경우 잘 알려진 Takahashi의 파압식에 근거한 파력값을 상회하였다. 한편, 전면벽 유공률에 따라서는 방파제 전면벽 및 후면벽에서 모두 유공률이 클수록 더 큰 파압이 계측되었다.

Keywords

References

  1. Allsop, N. W. H., Vicinanza, D. and McKenna, J. E. (1996). Wave forces on vertical and composite breakwaters, HR Wallingford Report, SR 443.
  2. Bergmann, H. and Oumeraci, H. (2000). "Wave loads on perforated caisson breakwaters." Proc. 27th Int. Conf. Coast. Engrg, ASCE, pp. 1622-1635.
  3. Evans, D. V. (1990). "The use of porous screens as wave dampers in narrow wave tanks." J. Engrg. Mech, Vol. 24, pp. 203-212.
  4. Franco, L., de Gerloni, M., Passoni, G. and Zacconi, D. (1998). "Wave forces on solid and perforated caisson breakwaters: comparison of field and laboratory measurements." Proc. 26th Int. Conf. Coast. Engrg, ASCE, pp. 1945-1958.
  5. Isaacson, M., Baldwin, J., Allyn, N. and Cowdell, S. (2000). "Wave interactions with perforated breakwater." J. Wtrwy. Port Coast. Ocean Engrg, Vol. 126, No. 5, pp. 229-235. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:5(229)
  6. Jarlan, G. E. (1961). "A perforated vertical wall breakwater." The Dock and Harbor Authority, Vol. XII, No. 486, pp. 394-398.
  7. Liu, Y., Li, Y. C., Teng, B., Jiang, J. J. and Ma, B. L. (2008). "Total horizontal and vertical forces of irregular waves on partially perforated caisson breakwaters." Coast. Engrg, Vol. 55, pp. 537-552. https://doi.org/10.1016/j.coastaleng.2008.02.005
  8. Losada, I. J., Losada, M. A. and Baquerizo, A. (1993). "An analytical method to evaluate the efficiency of porous screens as wave dampers." Appl. Ocean Res, Vol. 15, pp. 207-215. https://doi.org/10.1016/0141-1187(93)90009-M
  9. Oh, S. H., Ji, C. H., Oh, Y. M. and Jang S. C. (2013). "Comparison of wave pressure acting on the front wall according to the porosity of caisson breakwater having cap ot wave chamber." J. Korean Soc. Civil Engrs, Vol. 33, No. 2, pp. 573-584 (in Korean). https://doi.org/10.12652/Ksce.2013.33.2.573
  10. Suh, K. D. and Park, W. S. (1995). "Wave reflection from perforated- Wall caisson breakwaters." Coast. Engrg, Vol. 26, pp. 177-193. https://doi.org/10.1016/0378-3839(95)00027-5
  11. Suh, K. D., Park, J. K. and Park, W. S. (2006). "Wave reflection from partially perforated-wall caisson breakwater." Ocean Engrg, Vol 33, pp. 264-280. https://doi.org/10.1016/j.oceaneng.2004.11.015
  12. Tabet-Aoul, E. and Lambert, E. (2003). "Tentative new formula for maximum horizontal wave forces acting on perforated caisson." J. Wtrwy. Port Coast. Oc. Engrg, Vol. 129, No. 1, pp. 34-40. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:1(34)
  13. Takahashi, S. and Shimosako, K. (1994). "Wave pressure on a perforated wall caisson." Proc. Int. Conf, Hydro-tech. Eng. Port Harbor Const (HYDRO-PORT '94), pp. 747-764.
  14. Takahashi, S., Tanimoto, K. and Shimosako, K. (1993). Experimental study of impulsive pressures on composite breakwaters - Fundamental features of impulsive pressure and the impulsive pressure coefficient, Rep. Port Harbour Res. Inst, Vol. 31, No. 5, pp. 33-72.
  15. Tanimoto, K. and Takahashi, S. (1994). "Design and construction of caisson breakwaters - The Japanese experience." Coast. Engrg, Vol. 22, pp. 57-77. https://doi.org/10.1016/0378-3839(94)90048-5
  16. Van der Meer, J. W., d'Angremond, K. and Juhl, J. (1994). "Probabilistic calculations of wave forces on vertical structures." Proc. 24th Int. Conf. Coast. Engrg, ASCE, pp. 1754-1767.