• Title/Summary/Keyword: Perforated Element

Search Result 99, Processing Time 0.022 seconds

A Study on Improvement of Performance for Perforated Type Total HEX Element (다공형 유로를 적용한 전열교환기 소자의 성능향상에 관한 연구)

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Kim, Jee-Yong;Chu, Euy-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.529-536
    • /
    • 2007
  • The perforated type element for a heat recovery ventilation system has been studied to improve the performance. Four holes of diameter of 6mm are punched out for each flow channel to break the boundary layer development and increase the turbulence. KS cooling and heating conditions and test procedures are applied for study. The efficiencies are compared to those of the typical element with smooth surface. For cooling operations, the temperature, latent and enthalpy efficiencies increase 2.5%, 18% and 8%, respectively. For heating operations, the temperature, latent and enthalpy efficiencies increase 3%, 5% and 3.2%, respectively.

Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdraboh, Azza M.;Abdalla, Waleed S.;Alshorbagy, Amal E.
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.219-228
    • /
    • 2020
  • This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler-Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

Free Vibration Analysis of Perforated Plates Using Equivalent Elastic Properties

  • Park, Suhn;Jeong, Kyeong-Hoon;Kim, Tae-Wan;Kim, Kang-Soo;Park, Keun-Bae
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.416-423
    • /
    • 1998
  • Many studies for the perforated plates have been done, especially on the subject of static behavior and stress distribution in the plate. Equivalent elastic properties are one of the successive concepts for this problem. However little effort was taken to get their dynamic characteristics. In this paper finite element modal analysis was performed for the perforated plates having square and triangular hole patterns. An attempt to use existing equivalent elastic properties into the modal analysis of the plate was carried out. To verify feasibility of the finite element models, modal test was also performed on one typical perforated plate. System parameters such as natural frequencies and mode shapes were extracted and compared with the analysis results.

  • PDF

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

Assessment of Equivalent Elastic Modulus of Perforated Spherical Plates

  • JUMA, Collins;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.8-17
    • /
    • 2019
  • Perforated plates are used for the steam generator tube-sheet and the Reactor Vessel Closure Head in the Nuclear Power Plant. The ASME code, Section III Appendix A-8000, addresses the analysis of perforated plates, however, this analysis is only limited to the flat plate with a triangular perforation pattern. Based on the concept of the effective elastic constants, simulation of flat and spherical perforated plates and their equivalent solid plates were carried out using Finite Element Analysis (FEA). The isotropic material properties of the perforated plate were replaced with anisotropic material properties of the equivalent solid plate and subjected to the same loading conditions. The generated curves of effective elastic constants vs ligament efficiency for the flat perforated plate were in agreement with the design curve provided by ASME code. With this result, a plate with spherical curvature having perforations can be conveniently analyzed with equivalent elastic modulus and equivalent Poisson's ratio.

Dynamic analysis of piezoelectric perforated cantilever bimorph energy harvester via finite element analysis

  • Yousef A. Alessi;Ibrahim Ali;Mashhour A. Alazwari;Khalid Almitani;Alaa A Abdelrahman;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.179-202
    • /
    • 2023
  • This article presents a numerical analysis to investigate the natural frequencies and harmonic response of a perforated cantilever beam attached to two layers of piezoelectric materials by using the finite element method for the first time. The bimorph piezoelectric is composed of 3 layers; two of them at the outer are piezoelectric, and the inner isotropic material. A higher order 3-D 20-node solid element that exhibits quadratic displacement behavior is exploited to discretize the isotropic layer, and coupled piezoelectric 3D element with twenty nodes is used to mesh the top and bottom layers. CIRCU94 element is added to act as a resistor part of the model. The proposed model is validated with previous works. The numerical parametric studies are presented to illustrate the effects of perforation geometry, the number of rows, the resistance on the natural frequencies, frequency response, and power. It is found that the thickness has a positive relationship with the natural frequency. Perforations help in producing higher voltage, and the best shape is rectangular perforations, and to produce higher voltage, two rows of rectangular perforations should be applied.

Free Vibration Analysis of Perforated Shell Submerged in Fluid (유체에 잠긴 다공 원통형 쉘의 자유진동해석)

  • Jhung Myung-Jo;Jo Jong-Chull
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.247-258
    • /
    • 2006
  • For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with equivalent material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the equivalent material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Low frequency sound absorption improvement in refrigerator using multi perforated plate (다공판을 활용한 냉장고 저주파 흡음개선)

  • Ho-Jin, Kwon;Hyoung-Jin, Kim;Kyungjun, Song;Tae-hoon, Kim;Junhyo, Koo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.723-729
    • /
    • 2022
  • In this study, the multi perforated plate is used to reduce the compressor noise in the low frequency band inside the refrigerator machine room. To predict the sound absorption results, the impedance of the sound absorption material is measured. Using the measured impedance results, it is confirmed that the results used for FEM analysis is almost similar to the experimental values. The sound-absorbing structure that can operate in the target frequency band inside the refrigerator machine room is designed by controlling the hole diameter and arrangement in the perforated plate. The effect of reducing noise in the low frequency band is confirmed by applying perforated plate-based sound absorbing structures to the machine room.

Plastic yield behaviour of perforated sheets (천공판재의 항복거동)

  • 백승철;이동녕;오규환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.101-108
    • /
    • 1994
  • The sheet perforated with a uniform triangular pattern of round holes and subjected to in-plane stress f arbitrary biaxiality was investigated. The equivalent continuum approach was employed to develop a theoretical model for global analysis, which includes defining a yield criterion and the strain hardening in terms of apparent stresses and apparent strains. Finit element analysis and experiment tension test were performed to examine the validity of proposed yield criterion and strain hardening models of perforated sheets.

  • PDF

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).