• Title/Summary/Keyword: Percent depth dose measurement

Search Result 26, Processing Time 0.023 seconds

Dosimetric Measurement for 4MV X-Ray Linear Accelerator with Asymmetric Collimator System (4MV 선형가속기에서의 비대칭 콜리메이터의 선량측정)

  • 이병용;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 1990
  • Dosimetric measurement of an asymmetric collimator system was performed, using water phantom system for 4MV X-ray linear accelerator. We have studied the system of dose calculation with those measured result. We compared the field size factor and the percent depth dose for asymmetric collimator to those factor for symmetric fields. The results show that we can use symmetric field data directly within 1% error, if we consider the off axis ratio(OAR).

  • PDF

Measurement of Dose Distribution in Small Fields of NEC LINAC 6 MVX Using Films and Tissue Equivalent Phantoms (필름 및 tissue equivalent 팬톰을 이용한 NEC LINAC 6 MVX 소조사면에 대한 선량분포 측정)

  • Suh, Tae-Suk;Park, Dong-Rak;Choe, Bo-Young;Yoon, Sei-Chul;Jang, Hong-Seok;Park, Il-Bong;Kim, Moon-Chan;Bahk, Yong-Whee;Shin, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.9-17
    • /
    • 1993
  • The purpose of this paper is to develop a simple system to measure dose distribution in small fields of NEC LINAC 6 MVX using film and solid water instead of ion chamber and water phantom. Specific quantities measured include percent depth dose (PDD), off-axis ratio (OAR). We produced square fields of 1 to 3cm in perimeter in 1cm steps measured at SAD of 80cm. The PDD and OAR measured by film was compared with measurement made with ion chamber. We calculated the TMR from the basic PDD data using the conversion formula. The trends of our measured beam data and philips LINAC are similar each other. The measurement for the small field using film and solid water was simple. Hand-made film phantom was especially useful to measure OARs for the stereotactic radiosurgery.

  • PDF

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • Lee Hyo Nam;Ji Young Hoon;Ji Kwang Soo;Lee Dong Han
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.71-81
    • /
    • 1997
  • I. Objective and Importance of the Project We have been using MC-50 cyclotron and NT-50 neutron therapy machine for treating cancer patients since 1986 at Korea Cancer Center Hospital. It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine (Task Group 18), European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induce the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. II. Scope and Contents of the Project For establishing a unique technique of measurement and inventing a standard method of measurement of fast neutron beam, 1. to grasp the physical characteristics of neutron therapy machine 2. to study the principles for measrement of fast neutron beam 3. to get the dose distribution (dose rate, percent-depth dose, flatness etc) throught the actual measurement 4. to compare our data with those being cited world-widely.

  • PDF

A Study on the Simulation and the Measurement of 6 MeV electron Beam (6 MeV 전자선의 측정과 모의계산에 대한 연구)

  • Lee Sung Ah;Lee Jeong Ok;Moon Sun Rock;Won Jong Jin;Kang Jeong Ku;Kim Seung Kon
    • Radiation Oncology Journal
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 1995
  • Purpose : We compared the calcualted percent depth dose curves of 6 MeV electron beam to that of measured to evaluate the usefulness of Monte-carlo simulation method in radiation physics. Materials and Methods : The radiation dose values of 6 MeV electron beam using EGS4 code with one million histories in water were compared values that were measured from the depth dose curve of electron beam irradiated by medical accelerator ML6M. The central axis dose values were calculated according to the changing field size. such as $5{\times}5,\;10{\times}10,\;15{\times}15,\;20{\times}20cm^2$. Results : The value calculated showed a very similar shape to depth dose curve. The calculated and measured value of $D_max$ at $10{\times}10cm^2$ cone is 15mm and 14mm respectively. The calculated value of the surface radiation dose rate is $65.52\%$ and measured one is $76.94\%$. The surface radiation dose rate has varied from $64.43\%$ to $66.99\%$. The calculated values of $D_max$ are in the range between 15mm and 18mm. The calculated value was fitted well with measured value around the $D_max$ area, excluding build up range and below the $90\%$ depth dose area. Conclusion : This result suggested that the calculation of dose value can be replace the direct measurement of the dose for radiation therapy. Also, EGS4 may be a very convenient program to assess the effect of radiation dose using by personal computers.

  • PDF

Compare the Clinical Tissue Dose Distributions to the Derived from the Energy Spectrum of 15 MV X Rays Linear Accelerator by Using the Transmitted Dose of Lead Filter (연(鉛)필터의 투과선량을 이용한 15 MV X선의 에너지스펙트럼 결정과 조직선량 비교)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.80-88
    • /
    • 2008
  • Recent radiotherapy dose planning system (RTPS) generally adapted the kernel beam using the convolution method for computation of tissue dose. To get a depth and profile dose in a given depth concerened a given photon beam, the energy spectrum was reconstructed from the attenuation dose of transmission of filter through iterative numerical analysis. The experiments were performed with 15 MV X rays (Oncor, Siemens) and ionization chamber (0.125 cc, PTW) for measurements of filter transmitted dose. The energy spectrum of 15MV X-rays was determined from attenuated dose of lead filter transmission from 0.51 cm to 8.04 cm with energy interval 0.25 MeV. In the results, the peak flux revealed at 3.75 MeV and mean energy of 15 MV X rays was 4.639 MeV in this experiments. The results of transmitted dose of lead filter showed within 0.6% in average but maximum 2.5% discrepancy in a 5 cm thickness of lead filter. Since the tissue dose is highly depend on the its energy, the lateral dose are delivered from the lateral spread of energy fluence through flattening filter shape as tangent 0.075 and 0.125 which showed 4.211 MeV and 3.906 MeV. In this experiments, analyzed the energy spectrum has applied to obtain the percent depth dose of RTPS (XiO, Version 4.3.1, CMS). The generated percent depth dose from $6{\times}6cm^2$ of field to $30{\times}30cm^2$ showed very close to that of experimental measurement within 1 % discrepancy in average. The computed dose profile were within 1% discrepancy to measurement in field size $10{\times}10cm$, however, the large field sizes were obtained within 2% uncertainty. The resulting algorithm produced x-ray spectrum that match both quality and quantity with small discrepancy in this experiments.

  • PDF

ML-6M선형 가속기에서의 BEAM 특성에 대한 고찰

  • Mun, Eon-Cheol;Yun, Byeong-Un;O, Yang-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.5 no.1
    • /
    • pp.115-119
    • /
    • 1992
  • The beam characteristics and dosimetric measurements of the 6MV X-ray and 6MeV electron beam from a ML-6M linear accelerator are examined. The Percent Depth Dose(PDD) table and the tissue Maximum Ratio(TMR) table are taken from measurement as a function of the field size and the depth. The calculated TMR table from PDD table is compared with those from measurement. Other beam characteristics such as output factor, beam profile(including flatness, symmetry and penumbra), wedge, and the variation of Dmax are presented. All of these dosimetric measurements sufficiently characterized the beam to permit safe clinical use.

  • PDF

Charateristics of 10MV X-ray Beam from a Mevatron KD Linear Accelerator (Mevatron KD 선형 가속기에서의 10MV X-선 특성)

  • Yi, Byong-Yong;Lee, Myung-Za
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.101-108
    • /
    • 1988
  • The beam characteristics and dosimetric measurements of the 10MV X-ray beam from a Mevatron KD linear accelerator are examined. The Percent Depth Dose (POD) table and the Tissue Maximum Ratio (TMR) table are taken from measurement as a function of the field size and the depth. The calculated TMR table from PDD table is compared with those from measurement. Other beam characteristics such as output factor, beam profile (including flatness, symmetry and penumbra), wedge, and the variation of Dmax are presented.

  • PDF

The Effect of Aquaplast on Surface Dose of Photon Beam (Aquaplast가 광자선의 표면선량에 미치는 영향)

  • Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.95-100
    • /
    • 1995
  • Purpose : To evaluate the effect on surface dose due to Aquaplast used for immobilizing the patients with head and neck cancers in photon beam radiotherapy Materials and Methods: To assess surface and buildup region dose for 6MV X-ray from linear accelerator(Siemens Mevatron 6740), we measured percent ionization value with the Markus chamber model 30-329 manufactured by PTW Frieburg and Capintec electrometer, model WK92. For measurement of surface ionization value, the chamber was embedded in $25{\times}25{\times}3cm^3$ acrylic phantom and set on $25{\times}25{\times}5cm^3$ polystyrene phantom to allow adequate scattering. The measurements of percent depth ionization were made by placing the polystyrene layers of appropriate thickness over the chamber. The measurements were taken at 100cm SSD for $5{\times}5cm^2$, $10{\times}10cm^2$ and $15{\times}15cm^2$ field sizes, respectively. Placing the layer of Aquaplast over the chamber, the same procedures were repeated. We evaluated two types of Aquaplast: 1.6mm layer of original Aquaplast(manufactured by WFR Aquaplast Corp.) and transformed Aquaplast similar to moulded one for immobilizing the patients practically. We also measured surface ionization values with blocking tray in presence or absence of transformed Aquaplast. In calculating percent depth dose, we used the formula suggested by Gerbi and Khan to correct overresponse of the Markus chamber. Results : The surface doses for open fields of $5{\times}5cm^2$, $10{\times}10cm^2$, and $15{\times}15cm^2$ were $79\%$, $13.6\%$, and $18.7\%$, respectively. The original Aquaplast increased the surface doses upto $38.4\%$, $43.6\%$, and $47.4\%$, respectively. For transformed Aquaplast, they were $31.2\%$, $36.1\%$, and $40.5\%$, respectively. There were little differences in percent depth dose values beyond the depth of Dmax. Increasing field size, the blocking tray caused increase of the surface dose by $0.2\%$, $1.7\%$, $3.0\%$ without Aquaplast, $0.2\%$, $1.9\%$, $3.7\%$ with transformed Aquaplast, respectively. Conclusion: The original and transformed Aquaplast increased the surface dose moderately. The percent depth doses beyond Dmax, however, were not affected by Aquaplast. In conclusion, although the use of Aquaplast in practice may cause some increase of skin and buildup region dose, reductioin of skin-sparing effect will not be so significant clinically.

  • PDF

Study on Energy Distribution of the 6 MeV Electron Beam using Gaussian Approximation (가우시안 근사를 이용한 6 MeV 전자선의 에너지분포에 관한 연구)

  • Lee, Jeong-Ok;Kim, Seung-Kon
    • Journal of radiological science and technology
    • /
    • v.22 no.2
    • /
    • pp.53-56
    • /
    • 1999
  • A Gaussian distribution was parametrized for the initial distribution of the electron beam emitted from a 6MeV medical linear accelerator. A percent depth dose was measured in a water phantom and the corresponding Monte Carlo calculations were performed starting from a Gaussian distribution for a range of standard deviations, ${\sigma}=0.1$, 0.15, 0.2, 0.25, and 0.3 with being the mean value for the Incident beam energy. When measurement and calculation were compared, the calculation with the Gaussian distribution for ${\sigma}=0.25$ turned out to agree best with the measurement. The results from the present work can be utilized as input energy data in planning an electron beam therapy with a Monte Carlo calculation.

  • PDF

The Central Beam Characteristics of 6 MV X-Ray - The PDD and TMR for Siemens Linear Accelerator K.D. - (6MV X-선 선축중심선상에서의 BEAM 특성 - Siemens MEVATRON KD 선형가속기에서 P. D. D와 TMR을 중심으로 -)

  • Chung, Chil;Kim, Byong-Wook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.3 no.1
    • /
    • pp.63-67
    • /
    • 1989
  • The central beam characteristics of 6 MV X-ray from a Mevatron KD linear Accelerator are examin-depths The PDD (Percent Depth Dose) values and the TMR (Tissue Maximum Ratio) values are evaluated from measurement as a function of the depths and the field sizes. The calculated TMR values from the PDD are compared to those from measurement. The average differences between calculated TMR and measured one are within $1\%$ and we have concluded that calculated TMR values are acceptable for practical use.

  • PDF