• Title/Summary/Keyword: Peptide antibiotics

Search Result 76, Processing Time 0.025 seconds

Increase in antifungal activity by the combination of tolaasin and its analogue peptides (톨라신류 펩티드 혼합처리에 의한 항진균 활성의 증가)

  • Yun, Yeong-Bae;Lee, Hyoung-Jin;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.69-73
    • /
    • 2018
  • Oak mushroom (Lentinus edodes) is cultivated by using oak logs and sawdust medium. Green mold (Trichoderma) infection on these media severely suppresses the growth of oak mushroom. Usages of antibiotics and chemicals are not generally allowed to control of green mold since the mushroom is a fresh food. Tolaasin and its analogues, peptide toxins secreted by Pseudomonas tolaasii, have the antifungal activity and they have been successful to control the green mold disease. When the green mold, Trichoderma harzianum H1, was cultured in the presence of these toxins, the growth of fungus was effectively suppressed. In sawdust media, when the bacterial culture supernatants were sprayed on the aerial hyphae of green molds, the fungal growth was completely suppressed. Particularly, the antifungal activity was greatly increased by the combined culture extracts of P. tolaasii 6264 and HK11 strains. Therefore, these bacterial strains and their peptide toxins were able to suppress the growth of green molds and these can be good candidates to prevent from Trichoderma disease in oak mushroom cultivation.

Bactericidal Effect of Cecropin A Fused Endolysin on Drug-Resistant Gram-Negative Pathogens

  • Lim, Jeonghyun;Hong, Juyeon;Jung, Yongwon;Ha, Jaewon;Kim, Hwan;Myung, Heejoon;Song, Miryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.816-823
    • /
    • 2022
  • The rapid spread of superbugs leads to the escalation of infectious diseases, which threatens public health. Endolysins derived from bacteriophages are spotlighted as promising alternative antibiotics against multi-drug resistant bacteria. In this study, we isolated and characterized the novel Salmonella typhimurium phage PBST08. Bioinformatics analysis of the PBST08 genome revealed putative endolysin ST01 with a lysozyme-like domain. Since the lytic activity of the purified ST01 was minor, probably owing to the outer membrane, which blocks accessibility to peptidoglycan, antimicrobial peptide cecropin A (CecA) was fused to the N-terminus of ST01 to disrupt the outer membrane. The resulting CecA::ST01 has been shown to have increased bactericidal activity against gram-negative pathogens including Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, and Enterobacter cloacae and the most affected target was A. baumannii. In the presence of 0.25 µM CecA::ST01, A. baumannii ATCC 17978 strain was completely killed and CCARM 12026 strain was wiped out by 0.5 µM CecA::ST01, which is a clinical isolate of A. baumannii and resistant to multiple drugs including carbapenem. Moreover, the larvae of Galleria mellonella could be rescued up to 58% or 49% by the administration of CecA::ST01 upon infection by A. baumannii 17978 or CCARM 12026 strain. Finally, the antibacterial activity of CecA::ST01 was verified using 31 strains of five gram-negative pathogens by evaluation of minimal inhibitory concentration. Thus, the results indicate that a fusion of antimicrobial peptide to endolysin can enhance antibacterial activity and the spectrum of endolysin where multi-drug resistant gram-negative pathogens can be efficiently controlled.

Switching Antibiotics Production On and Off in Actinomycetes by an IclR Family Transcriptional Regulator from Streptomyces peucetius ATCC 27952

  • Chaudhary, Amit Kumar;Singh, Bijay;Maharjan, Sushila;Jha, Amit Kumar;Kim, Byung-Gee;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1065-1072
    • /
    • 2014
  • Doxorubicin, produced by Streptomyces peucetius ATCC 27952, is tightly regulated by dnrO, dnrN, and dnrI regulators. Genome mining of S. peucetius revealed the presence of the IclR (doxR) type family of transcription regulator mediating the signal-dependent expression of operons at the nonribosomal peptide synthetase gene cluster. Overexpression of doxR in native strain strongly repressed the drug production. Furthermore, it also had a negative effect on the regulatory system of doxorubicin, wherein the transcript of dnrI was reduced to the maximum level in comparision with the other two. Interestingly, the overexpression of the same gene also had strong inhibitory effects on the production of actinorhodin (blue pigment) and undecylprodigiosin (red pigment) in Streptomyces coelicolor M145, herboxidiene production in Streptomyces chromofuscus ATCC 49982, and spinosyn production in Saccharopolyspora spinosa NRRL 18395, respectively. Moreover, DoxR exhibited pleiotropic effects on the production of blue and red pigments in S. coelicolor when grown in different agar media, wherein the production of blue pigment was inhibited in R2YE medium and the red pigment was inhibited in YEME medium. However, the production of both blue and red pigments from S. coelicolor harboring doxR was halted in ISP2 medium, whereas S. coelicolor produced both pigmented antibiotics in the same plate. These consequences demonstrate that the on and off production of these antibiotics was not due to salt stress or media compositions, but was selectively controlled in actinomycetes.

Functional Role of Peptide Segment Containing 1-25 Amino Acids in N-terminal End Region of ErmSF (ErmSF에서 특이적으로 발견되는 N-terminal end region에 존재하는 1-25번째 아미노산을 함유하는 peptide segment의 효소 활성에서의 역할)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.165-171
    • /
    • 2006
  • ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA to confer the resistance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism ranging from antibiotic producers to pathogens. To define the functional role of peptide segment encompassing amino acid residues 1 to 25 in NTER (N-terminal end region) of ErmSF, one of the ERM proteins, DNA fragment encoding mutant protein deprived of that peptide was cloned and overexpressed in E. coli to obtain a purified soluble form protein to the apparent homogeneity in the yield of 12.65 mg per liter of culture. The in vitro activity of mutant protein was found to be 85% compared to wild type ErmSF, suggesting that this peptide interact with substrate to affect the enzyme activity. This diminished activity of mutant protein caused the delayed expression of antibiotic resistance in vivo, that at fIrst cells expressing mutant protein showed the retarded growth due to the antibiotic action but with time cells inhibited by antibiotic gradually recovered the viability to exert the resistance to the same extent as those with wild type protein.

Biological Properties and Structural Analysis of Novel Antifungal Antibiotics AF-011A (신규 항진균물질 AF-011A의 생물학적 활성 및 구조분석)

  • 서정우;임융호;현봉철;김창완;연창석;이덕근;김광표;정재경;이철훈
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.564-569
    • /
    • 1993
  • AF-001A is a novel antifungal cyclic glyco-peptise isolated from Pseudomonas cepacia AF6008. AF-001A is a mixture of AF-011A1 and AF-001A2. Each compound contains glycine(1), serine(2), asparagine(1), 2,4-diaminobutyric acid(1), beta-hydroxytyrosine(1), xylose(1) and a methylene chain amino acid(1). Additionally, A1 contains one beta-hydroxyasparagine that is replaced with as asparagine in A2. AF-011A showed high in vitro antifungal activity against various animal and plant pathogenic fungi and caused no irritation on the skin of rabbits.

  • PDF

Antimicrobial Peptides as Natural Antibiotic Materials (새로운 천연 항생물질로서의 항균 펩타이드)

  • Cha, Yeon-Kyung;Kim, Young-Soo;Choi, Yoo-Seong
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Antimicrobial peptides are widely used in various organisms as a defense system against infection. The peptides are lethal towards bacteria and fungi, however have minimal toxicity in mammalian and plant cells. In this aspect, it is considered that antimicrobial peptides are new alternative materials for defensing against microbial infection. Here, we describe overall characteristics of antimicrobial peptides based on the mechanism of action, classification of the peptides, report detection/screening methods and chemical/biological production. It is expected that understanding of innate immune system based on antimicrobial peptides tends to develop novel natural antimicrobial agents, which might be applied for defensing pathogenic microorganisms resistant to conventional antibiotics.

Effect of the Polychaete Antimicrobial Peptide as feed Additives on Olive Flounder and Black Rockfish Immune Activity (넙치 및 조피볼락 면역 활성에 대한 사료첨가제로서 갯지렁이 항균펩타이드의 효과)

  • KWON, Mun-Gyeong;SEO, Jung Soo;YOUN, Hwang Jee;PARK, Chan-Il;JEONG, Ji-Min;BAE, Jin-Sol
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1640-1650
    • /
    • 2016
  • In this study, the effect of the polychaete antimicrobial peptide as feed additives on fish, olive flounder (Paralichythys olivaceus) and black rockfish (Sebastes schlegelii), immune activity was described. The antimicrobial peptide of the polychaete was induced by peptidoglycan from Micrococcus luteus. The fish were fed an experimental diet supplemented with 0%, 0.05%, 0.1%, 0.5% or 1% of immune induced the polychaete to a commercial diet. Haematological parameters, nonspecific immunes and stress were evaluated 2, 4, 6 and 8 weeks during fed. The resistance against bacteria, Edwardsiella tarda and Streptococcus iniae, were analysed on after 8 weeks. The haematological parameters were not significantly changed among tested groups. But the lysozyme activities were significantly high in the 0.1% and 0.5% supplement group of olive flounder and black rockfish, respectively. Additionally, cortisol in plasma was low in the 0.1% and 0.5% supplement group of olive flounder and black rockfish, respectively. And resistance of these supplement groups were significantly induced against bacterial injection.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

Effects of Dietary Supplementation of a New Probiotic CS61 Culture on Performance in Broiler Chickens (새로운 생균제 CS61 배양액의 사료 내 급여가 육계의 생산성에 미치는 영향)

  • Kim, Sung-Hwan;Lee, In-Chul;Baek, Hyung-Seon;Kang, Seong-Soo;Kim, Hyoung-Chin;Yoo, Jin-Cheol;Kim, Jong-Choon
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.340-346
    • /
    • 2012
  • Bacterial resistance to antibiotics and residues of antibiotics in poultry products have encouraged the use of probiotics, prebiotic substrates, and synbiotic combinations of prebiotics and probiotics as alternative approaches to the use of antibiotics in poultry. The present study was carried out to evaluate the effect of a new probiotic CS61 culture on growth performance, feed conversion efficiency, and safety in broiler chickens, and to evaluate its value as an alternative for antibiotics used as a feed additive. Two dosages of CS61 culture (0.1% and 1%) were fed to chickens for 28 days. The results showed that terminal body weight and daily weight gain in the treatment groups increased in a dose-dependent manner when compared with the control group. Dietary supplementation with CS61 culture also improved feed conversion rate compared to the control group. There were no treatment-related toxic effects in terms of clinical findings, mortality, necropsy findings, hematology, or serum biochemistry parameters in any group tested. The nitric oxide assay showed that CS61 peptide has a dose-dependent inhibitory effect on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. The results of this experiment indicated that dietary supplementation of CS61 culture may improve growth performance and feed conversion efficiency in chickens through its anti-inflammatory effect.

Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane

  • Lee, Eunjung;Jeong, Ki-Woong;Lee, Juho;Shin, Areum;Kim, Jin-Kyoung;Lee, Juneyoung;Lee, Dong Gun;Kim, Yangmee
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.282-287
    • /
    • 2013
  • Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an ${\alpha}$-helical structure from $Lys^3$ to $Lys^{21}$ and from $Ala^{25}$ to $Val^{35}$, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as $Trp^2$ and $Phe^5$ at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi.