DOI QR코드

DOI QR Code

Switching Antibiotics Production On and Off in Actinomycetes by an IclR Family Transcriptional Regulator from Streptomyces peucetius ATCC 27952

  • Chaudhary, Amit Kumar (Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Singh, Bijay (Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Maharjan, Sushila (Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Jha, Amit Kumar (Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Kim, Byung-Gee (School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Sohng, Jae Kyung (Institute of Biomolecule Reconstruction, Department of Pharmaceutical Engineering, Sun Moon University)
  • Received : 2014.03.11
  • Accepted : 2014.04.24
  • Published : 2014.08.28

Abstract

Doxorubicin, produced by Streptomyces peucetius ATCC 27952, is tightly regulated by dnrO, dnrN, and dnrI regulators. Genome mining of S. peucetius revealed the presence of the IclR (doxR) type family of transcription regulator mediating the signal-dependent expression of operons at the nonribosomal peptide synthetase gene cluster. Overexpression of doxR in native strain strongly repressed the drug production. Furthermore, it also had a negative effect on the regulatory system of doxorubicin, wherein the transcript of dnrI was reduced to the maximum level in comparision with the other two. Interestingly, the overexpression of the same gene also had strong inhibitory effects on the production of actinorhodin (blue pigment) and undecylprodigiosin (red pigment) in Streptomyces coelicolor M145, herboxidiene production in Streptomyces chromofuscus ATCC 49982, and spinosyn production in Saccharopolyspora spinosa NRRL 18395, respectively. Moreover, DoxR exhibited pleiotropic effects on the production of blue and red pigments in S. coelicolor when grown in different agar media, wherein the production of blue pigment was inhibited in R2YE medium and the red pigment was inhibited in YEME medium. However, the production of both blue and red pigments from S. coelicolor harboring doxR was halted in ISP2 medium, whereas S. coelicolor produced both pigmented antibiotics in the same plate. These consequences demonstrate that the on and off production of these antibiotics was not due to salt stress or media compositions, but was selectively controlled in actinomycetes.

Keywords

References

  1. Aceti DJ, Champness WC. 1998. Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J. Bacteriol. 180: 3100-3106.
  2. Bibb MJ. 2005. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8: 208-215. https://doi.org/10.1016/j.mib.2005.02.016
  3. Challis GL, Hopwood DA. 2003. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl. Acad. Sci. USA 100: 14555-14561. https://doi.org/10.1073/pnas.1934677100
  4. Chater KF. 1993. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol. 47: 685-713. https://doi.org/10.1146/annurev.mi.47.100193.003345
  5. Chaudhary AK, Dhakal D, Sohng JK. 2013. An insight into the -omics based engineering of streptomycetes for secondary metabolite overproduction. Biomed. Res. Int. 2013: 1-15.
  6. Chaudhary AK, Park JW, Yoon YJ, Kim BG, Sohng JK. 2013. Re-engineering of genetic circuit for 2-deoxystreptamine (2- DOS) biosynthesis in Escherichia coli BL21 (DE3). Biotechnol. Lett. 35: 285-293. https://doi.org/10.1007/s10529-012-1077-2
  7. Feitelson JS, Malpartida F, Hopwood DA. 1985. Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3 (2). J. Gen. Microbiol. 131: 2431-2441.
  8. Flardh K, Buttner MJ. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7: 36-49. https://doi.org/10.1038/nrmicro1968
  9. Furuya K, Hutchinson CR. 1996. The DnrN protein of Streptomyces peucetius, a pseudo-response regulator, is a DNA-binding protein involved in the regulation of daunorubicin biosynthesis. J. Bacteriol. 178: 6310-6318. https://doi.org/10.1128/jb.178.21.6310-6318.1996
  10. Gramajo HC, Takano E, Bibb MJ. 1993. Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3 (2) is transcriptionally regulated. Mol. Microbiol. 7: 837-845. https://doi.org/10.1111/j.1365-2958.1993.tb01174.x
  11. Gui L, Sunnarborg A, Pan B, LaPorte DC. 1996. Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J. Bacteriol. 178: 321-324. https://doi.org/10.1128/jb.178.1.321-324.1996
  12. Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ. 2004. Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3 (2). Microbiology 150: 2795-2806. https://doi.org/10.1099/mic.0.27181-0
  13. Ishizuka H, Beppu T, Horinouchi S. 1995. Involvement of a small ORF downstream of the afsR gene in the regulation of secondary metabolism in Streptomyces coelicolor A3 (2). Actinomycetologica 9: 37-43. https://doi.org/10.3209/saj.9_37
  14. Jha AK, Lamichhane J, Sohng JK. 2014. Enhancement of herboxidiene production in Streptomyces chromofuscus ATCC 49982. J. Microbial. Biotechnol. 24: 52-58. https://doi.org/10.4014/jmb.1308.08063
  15. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, UK.
  16. Lorca GL, Ezersky A, Lunin VV, Walker JR, Altamentova S, Evdokimova E, et al. 2007. Glyoxylate and pyruvate are antagonistic effectors of the Escherichia coli IclR transcriptional regulator. J. Biol. Chem. 282: 16476-16491. https://doi.org/10.1074/jbc.M610838200
  17. MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68. https://doi.org/10.1016/0378-1119(92)90603-M
  18. Malpartida F, Hopwood DA. 1986. Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3 (2). Mol. Gen. Genet. 205: 66-73. https://doi.org/10.1007/BF02428033
  19. McKenzie NL, Nodwell JR. 2007. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J. Bacteriol. 189: 5284-5292. https://doi.org/10.1128/JB.00305-07
  20. Negre D , Cortay JC, Old IG, Galinier A, Richaud C , Saint Girons I, Cozzone AJ. 1991. Overproduction and characterization of the iclR gene product of Escherichia coli K-12 and comparison with that of Salmonella typhimurium LT2. Gene 97: 29-37. https://doi.org/10.1016/0378-1119(91)90006-W
  21. Otten SL, Ferguson J, Hutchinson CR. 1995. Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J. Bacteriol. 177: 1216-1224. https://doi.org/10.1128/jb.177.5.1216-1224.1995
  22. Otten SL, Olano C, Hutchinson CR. 2000. The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology 146: 1457-1468. https://doi.org/10.1099/00221287-146-6-1457
  23. Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, et al. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326-356. https://doi.org/10.1128/MMBR.69.2.326-356.2005
  24. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  25. Santamarta I, Lopez-Garcia MT, Perez-Redondo R, Koekman B, Martin JF, Liras P. 2007. Connecting primary and secondary metabolism: AreB, an IclR-like protein, binds the AREccaR sequence of S. clavuligerus and modulates leucine biosynthesis and cephamycin C and clavulanic acid production. Mol. Microbiol. 66: 511-524. https://doi.org/10.1111/j.1365-2958.2007.05937.x
  26. Sevcikova B, Kormanec J. 2004. Differential production of two antibiotics of Streptomyces coelicolor A3 (2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch. Microbiol. 181: 384-389. https://doi.org/10.1007/s00203-004-0669-1
  27. Singh B, Lee CB, Sohng JK. 2010. P recursor for b iosynthesis of sugar moiety of doxorubicin depends on rhamnose biosynthetic pathway in Streptomyces peucetius ATCC 27952. Appl. Microbiol. Biotechnol. 85: 1565-1574. https://doi.org/10.1007/s00253-009-2225-z
  28. Sola-Landa A, Moura RS, Martin JF. 2003. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc. Nat. Acad. Sci. USA 100: 6133-6138. https://doi.org/10.1073/pnas.0931429100
  29. Sthapit B , Oh TJ, Lamichhane R , Liou K, Lee HC, Kim CG, Sohng JK. 2004. Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206. https://doi.org/10.1016/j.febslet.2004.04.033
  30. Takano E. 2006. Gamma-butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9: 287-294. https://doi.org/10.1016/j.mib.2006.04.003
  31. Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ. 1992. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3 (2). Mol. Microbiol. 19: 2797-2804.
  32. Traag BA, Kelemen GH, Van Wezel GP. 2004. Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3 (2). Mol. Microbiol. 53: 985-1000. https://doi.org/10.1111/j.1365-2958.2004.04186.x
  33. Tropel D, van der Meer J R. 2004. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol. Mol. Biol. Rev. 68: 474-500. https://doi.org/10.1128/MMBR.68.3.474-500.2004
  34. Uguru GC, Stephens KE, Stead JA, Towle JE, Baumberg S , McDowall KJ. 2005. Transcriptional activation of the pathwayspecific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol. Microbiol. 58: 131-150. https://doi.org/10.1111/j.1365-2958.2005.04817.x
  35. Xu D, Seghezzi N, Esnault C, Virolle MJ. 2010. Repression of antibiotic production and sporulation in Streptomyces coelicolor by overexpression of a TetR family transcriptional regulator. Appl. Environ. Microbiol. 76: 7741-7753. https://doi.org/10.1128/AEM.00819-10
  36. Xue C, Duan Y, Zhao F, Lu W. 2013. Stepwise increase of spinosad production in Saccharopolyspora spinosa by metabolic engineering. Biochem. Eng. J. 72: 90-95. https://doi.org/10.1016/j.bej.2013.01.007
  37. Yang H, An Y, Wang L, Zhang S, Zhang Y , Tian Y, et al. 2010. Autoregulation of hpdR and its effect on CDA biosynthesis in Streptomyces coelicolor. Microbiology 156: 2641- 2648. https://doi.org/10.1099/mic.0.038604-0
  38. Yang YH, Song E, Kim EJ, Lee K, Kim WS, Park SS, et al. 2009. NdgR, an IclR-like regulator involved in amino-aciddependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 82: 501-511. https://doi.org/10.1007/s00253-008-1802-x
  39. Zhang RG, Kim Y, Skarina T, Beasley S, Laskowski R, Arrowsmith C, et al. 2002. Crystal structure of Thermotoga maritima 0 065, a m ember o f the IclR t ranscriptional f actor family. J. Biol. Chem. 277: 19183-19190. https://doi.org/10.1074/jbc.M112171200

Cited by

  1. Paired-termini antisense RNA mediated inhibition of DoxR in Streptomyces peucetius ATCC 27952 vol.20, pp.3, 2014, https://doi.org/10.1007/s12257-014-0810-1
  2. An overview on transcriptional regulators in Streptomyces vol.1849, pp.8, 2014, https://doi.org/10.1016/j.bbagrm.2015.06.007
  3. Nonribosomal peptides synthetases and their applications in industry vol.4, pp.1, 2014, https://doi.org/10.1186/s40508-016-0057-6
  4. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect vol.102, pp.10, 2018, https://doi.org/10.1007/s00253-018-8957-x
  5. Regulatory non-coding sRNAs in bacterial metabolic pathway engineering vol.52, pp.None, 2019, https://doi.org/10.1016/j.ymben.2018.11.013
  6. Construction and application of a “superplasmid” for enhanced production of antibiotics vol.104, pp.4, 2014, https://doi.org/10.1007/s00253-019-10283-6