• Title/Summary/Keyword: Pentacene$SiO_2$

Search Result 34, Processing Time 0.023 seconds

Pentacene Thin-Film Transistor with Different Polymer Gate Insulators (게이트 절연막에 따른 펜타신 박막 트랜지스터의 전기적 특성 분석)

  • Kim, Jae-Kyoung;Her, Hyun-Jung;Kim, Jae-Wan;Choi, Y.J.;Kang, C.J.;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1345-1346
    • /
    • 2007
  • 다양한 게이트 절연막의 펜타신 박막 트랜지스터의 전기적 특성을 atomic force microscope (AFM), X-선 회절을 사용하여 분석하였다. 펜타신 박막 트랜지스터는 thermal evaporator 방법을 사용하여 여러 폴리며 기판위에 제작하였다. Hexamethylsilasane (HMDS), polyvinyl acetate (PVA), polymethyl methacrylate (PMMA)등의 폴리머 기판을 사용하여 다양한 온도에서 증착시켰다. 이 때 PMMA위에 증착시킨 펜타신의 경우가 가장 큰 그레인 크기를 보였고, 가장 적은 트랩 농도를 보였다. 그리고 상부 전극 구조를 가진 박막 트랜지스터를 HMDS 처리를 한 $SiO_2$와 PMMA 절연막을 사용하여 제작하고 비교하였다. 이때 PMMA기판 위에 제작한 트랜지스터는 전계효과 이동도가 ${\mu}_{FET}=0.03cm^{2}/Vs$ 이고, 문턱이전 기울기 0.55V/dec, 문턱전압 $V_{th}=-6V$, on/off 전류비 $>10^5$의 전기적 특성을 보였고, $SiO_2$ 기판위에 제작한 트랜지스터는 전계효과 이동도 ${\mu}_{FET}=0.004cm^{2}/Vs$, 문턱이전 기울기 0.518 V/dec, 문턱전압 $V_{th}=5V$, on/off 전류비 $>10^4$의 전기적 특성을 보였다.

  • PDF

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Non-volatile Molecular Memory using Nano-interfaced Organic Molecules in the Organic Field Effect Transistor

  • Lee, Hyo-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.31-32
    • /
    • 2010
  • In our previous reports [1-3], electron transport for the switching and memory devices using alkyl thiol-tethered Ru-terpyridine complex compounds with metal-insulator-metal crossbar structure has been presented. On the other hand, among organic memory devices, a memory based on the OFET is attractive because of its nondestructive readout and single transistor applications. Several attempts at nonvolatile organic memories involve electrets, which are chargeable dielectrics. However, these devices still do not sufficiently satisfy the criteria demanded in order to compete with other types of memory devices, and the electrets are generally limited to polymer materials. Until now, there is no report on nonvolatile organic electrets using nano-interfaced organic monomer layer as a dielectric material even though the use of organic monomer materials become important for the development of molecularly interfaced memory and logic elements. Furthermore, to increase a retention time for the nonvolatile organic memory device as well as to understand an intrinsic memory property, a molecular design of the organic materials is also getting important issue. In this presentation, we report on the OFET memory device built on a silicon wafer and based on films of pentacene and a SiO2 gate insulator that are separated by organic molecules which act as a gate dielectric. We proposed push-pull organic molecules (PPOM) containing triarylamine asan electron donating group (EDG), thiophene as a spacer, and malononitrile as an electron withdrawing group (EWG). The PPOM were designed to control charge transport by differences of the dihedral angles induced by a steric hindrance effect of side chainswithin the molecules. Therefore, we expect that these PPOM with potential energy barrier can save the charges which are transported to the nano-interface between the semiconductor and organic molecules used as the dielectrics. Finally, we also expect that the charges can be contributed to the memory capacity of the memory OFET device.[4]

  • PDF

Effects of thickness of GIZO active layer on device performance in oxide thin-film-transistors

  • Woo, C.H.;Jang, G.J.;Kim, Y.H.;Kong, B.H.;Cho, H.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.137-137
    • /
    • 2009
  • Thin-film transistors (TFTs) that can be prepared at low temperatures have attracted much attention due to the great potential for flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited by low field effect mobility or rapidly degraded after exposing to air in many cases. Another approach is amorphous oxide semiconductors. Amorphous oxide semiconductors (AOSs) have exactly attracted considerable attention because AOSs were fabricated at room temperature and used lots of application such as flexible display, electronic paper, large solar cells. Among the various AOSs, a-IGZO was considerable material because it has high mobility and uniform surface and good transparent. The high mobility is attributed to the result of the overlap of spherical s-orbital of the heavy pest-transition metal cations. This study is demonstrated the effect of thickness channel layer from 30nm to 200nm. when the thickness was increased, turn on voltage and subthreshold swing were decreased. a-IGZO TFTs have used a shadow mask to deposit channel and source/drain(S/D). a-IGZO were deposited on SiO2 wafer by rf magnetron sputtering. using power is 150W, working pressure is 3m Torr, and an O2/Ar(2/28 SCCM) atmosphere at room temperature. The electrodes were formed with Electron-beam evaporated Ti(30nm) and Au(70nm) structure. Finally, Al(150nm) as a gate metal was evaporated. TFT devices were heat treated in a furnace at $250^{\circ}C$ in nitrogen atmosphere for an hour. The electrical properties of the TFTs were measured using a probe-station to measure I-V characteristic. TFT whose thickness was 150nm exhibits a good subthreshold swing(S) of 0.72 V/decade and high on-off ratio of 1E+08. Field effect mobility, saturation effect mobility, and threshold voltage were evaluated 7.2, 5.8, 8V respectively.

  • PDF