• Title/Summary/Keyword: Penalty Parameter

Search Result 75, Processing Time 0.027 seconds

Dynamic Performance Estimation and Optimization for the Power Transmission of a Heavy Duty Vehicle (중부하 차량 동력전달계의 성능평가와 최적화)

  • 조한상;임원식;이장무;김정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1996
  • Automatic transmission for heavy duty vehicles is a part of the power pack which includes steering and braking systems. This transmission in different from the one for passenger car. Therefore, in order to understand the trend of the important design parameters, maneuverability, acceleration performance and maximum speed, we need to analyze the total performance characteristics of the power transmission systems. In this study, modeling of the automatic transmission in heavy duty vehicle is carried out and the performance analysis method is presented. Results can be used for performance estimation data in the analysis for several combination method which determines the optimal parameters on the basis of penalty functions and weightings. And the estimation method of the important performance parameters such as engine inertia or power loss of engine by experiments is presented.

  • PDF

Design of Adaptive Regulator Using the Explicit Criterion Minimization (명시적 평가지수 최소화 방법에 의한 적응 레귤레이터의 설계)

  • 이상재;채창현;안태천;조시형
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.997-1004
    • /
    • 1990
  • In this paper, a design method of a robust adaptive regulator with feedfoward path based on the explicit criterion minimization is proposed. The convergence speed of parameter estimation is improved by using the stochastic Newton minimization method in the criterion minimization algorithm, and sensitivity derivatives are used in the regulator calculation for improving the robustness of the control system. Trh proposed adaptive regulator is applied to the stable minimum-phase and nonminimum-phase system, the results are shown that control performance and disturbance compensation ability of the regulator are improved. And the choosing method of input penalty is proposed.

  • PDF

A Novel Adaptive Biasing Scheme for CMOS Op-Amps

  • Kurkure Girish;Dutta Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.168-172
    • /
    • 2005
  • In this paper, we present a new adaptive biasing scheme for CMOS op-amps. The designed circuit has been used in an Operational Transconductance Amplifier (OTA) with ${\pm}1$ V power supply, and it has improved the positive and negative slew rates from 2.92 V/msec to 1242 V/msec and from 1.56 V/msec to 133 V/msec respectively, while maintaining all the small-signal performance parameter values the same as that without adaptive biasing (as expected), however, there was a marginal decrease of the dynamic range. The most useful features of the proposed circuit are that it uses a very low number of components (thus not creating severe area penalty) and requires only 25 nW of extra stand-by power.

AN ACTIVE SET SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING

  • Su, Ke;Yuan, Yingna;An, Hui
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.293-303
    • /
    • 2012
  • Sequential quadratic programming (SQP) has been one of the most important methods for solving nonlinear constrained optimization problems. Recently, filter method, proposed by Fletcher and Leyffer, has been extensively applied for its promising numerical results. In this paper, we present and study an active set SQP-filter algorithm for inequality constrained optimization. The active set technique reduces the size of quadratic programming (QP) subproblem. While by the filter method, there is no penalty parameter estimate. Moreover, Maratos effect can be overcome by filter technique. Global convergence property of the proposed algorithm are established under suitable conditions. Some numerical results are reported in this paper.

Optimal Production Design Using Genetic Algorithms (유전알고리즘을 이용한 최적생산설계)

  • 류영근
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.49
    • /
    • pp.115-123
    • /
    • 1999
  • An optimization problem is to select the best of many possible design alternatives in a complex design space. Genetic algorithms, one of the numerous techniques to search optimal solution, have been successfully applied to various problems (for example, parameter tuning in expert systems, structural systems with a mix of continuous, integer and discrete design variables) that could not have been readily solved with more conventional computational technique. But, conventional genetic algorithms are ill defined for two classes of problems, ie., penalty function and fitness scaling. Therefore, this paper develops Improved genetic algorithms(IGA) to solve these problems. As a case study, numerical examples are demonstrated to show the effectiveness of the Improved genetic algorithms.

  • PDF

Research on the Optimum Design for PSC Box Girder Bridges Using the Full Staging Method (FSM 공법 PSC 박스 거더교의 최적설계에 관한 연구)

  • Kim, Ki-Wook;Park, Moon-Ho;Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.159-167
    • /
    • 2004
  • The objective of this study is development of the optimum design program to minimize the cost for PSC box girder bridge using the full staging method to indicate the necessity for the optimum design applied many types of bridges. It also considered the proper span length to girder depth ratio and the cell number along the width of bridge. This program used SUMT procedure and Kavlie's extended penalty function to allow infeasible design points in the process. Powell's direct method was used in searching design points and Gradient Approximate Method was used to reduce design hours. This study showed the convergence in design parameter and correlation of totally optimized cost according to cell numbers, span lengths, and lane numbers.

Compensation of Chromatic Dispersion and Self Phase Modulation in Long-haul Optical Transmission System using Mid-span Optical Phase Conjugator (Mid-span Optical Phase Conjugator를 이용한 장거리 광 전송 시스템에서의 색 분산과 자기 위상 변조의 보상에 관한 연구)

  • 이성렬;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.576-585
    • /
    • 2001
  • In this paper, we investigated the method of compensation for optical pulse shape distortion due to both chromatic dispersion and SPM(self phase modulation) in a single mode fiber We selected MSSI(mid-span spectral inversion) as compensation method using OPC(optical phase conjugator). We used EOP(eye-opening penalty) parameter in order to evaluate the efficiency of waveform distortion compensation. In this paper, we induced optimum pump power level in optical phase conjugator through analytic method of computer simulation. And we investigated input signal power range being able to maintain stable reception performance under the condition of optimum pump power. We verified the possibility of high performance optical transmission system realization through the inducement and application of optimum pump power, input signal power and in-line amplifier spacing, because power control is important in the compensation for optical pulse distortion.

  • PDF

An algebraic multigrids based prediction of a numerical solution of Poisson-Boltzmann equation for a generation of deep learning samples (딥러닝 샘플 생성을 위한 포아즌-볼츠만 방정식의 대수적 멀티그리드를 사용한 수치 예측)

  • Shin, Kwang-Seong;Jo, Gwanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.181-186
    • /
    • 2022
  • Poisson-Boltzmann equation (PBE) is used to model problems arising from various disciplinary including bio-pysics and colloid chemistry. Therefore, to predict a numerical solution of PBE is an important issue. The authors proposed deep learning based methods to solve PBE while the computational time to generate finite element method (FEM) solutions were bottlenecks of the algorithms. In this work, we shorten the generation time of FEM solutions in two directions. First, we experimentally find certain penalty parameter in a bilinear form. Second, we applied algebraic multigrids methods to the algebraic system so that condition number is bounded regardless of the meshsize. In conclusion, we have reduced computation times to solve algebraic systems for PBE. We expect that algebraic multigrids methods can be further employed in various disciplinary to generate deep learning samples.

Methods to Improve Convergence Rate of Statistical Reconstruction Algorithm in Transmission CT (투과형 CT에서 통계적 재구성 알고리즘의 수렴률 향상 방안)

  • Min-Gu Song
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.25-33
    • /
    • 2024
  • In tomographic image reconstruction, the focus is on developing CT image reconstruction methods that can maintain high image quality while reducing patient radiation exposure. Typically, statistical image reconstruction methods have the ability to generate high-quality and accurate images while significantly reducing patient radiation exposure. However, in cases like CT image reconstruction, which involve multi-dimensional parameter estimation, the degree of the Hessian matrix of the penalty function is very large, making it impossible to calculate. To solve this problem, the author proposed the PEMG-1 algorithm. However, the PEMG-1 algorithm has issues with the convergence speed, which is typical of statistical image reconstruction methods, and increasing the penalty log-likelihood. In this study, we propose a reconstruction algorithm that ensures fast convergence speed and monotonic increase in likelihood. The basic structure of this algorithm involves sequentially updating groups of pixels instead of updating all parameters simultaneously with each iteration.

Time-lapse Inversion of 3D Resistivity Monitoring Data (3차원 전기비저항 모니터링 자료의 시간경과 역산)

  • Kim, Yeon-Jung;Cho, In-Ky;Yong, Hwan-Ho;Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • We developed a time-lapse inversion using new cross-model constraints based on change ratio and resolution of model parameters. The cross-model constraint based on change ratio imposes the same penalty on the model parameters with equal change ratio. This constraint can emphasize the model parameters with significant change regardless of their increase or decrease. The resolution cross-model constraint imposes a small penalty on the model parameters with poor resolution, but a large penalty on the model parameters with good resolution. Thus, the model parameter with poor resolution can be effectively identified in the inversion result if they are significantly changed with time. Through the numerical tests for 3D resistivity monitoring data sets, the performance of these two cross-model constraints was confirmed. Finally, for the safety estimation of a sea dyke, we applied the developed time-lapse inversion to the 3D resistivity monitoring data that were acquired at a sea dike located in western coastal area of Korea. The result of time-lapse inversion suggested that there were no significant changes at the sea dike during the monitoring period.