DOI QR코드

DOI QR Code

AN ACTIVE SET SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING

  • Su, Ke (College of Mathematics and Computer Sciencs, Hebei University) ;
  • Yuan, Yingna (College of Mathematics and Computer Sciencs, Hebei University) ;
  • An, Hui (College of Mathematics and Computer Sciencs, Hebei University)
  • Received : 2011.12.28
  • Accepted : 2012.03.15
  • Published : 2012.05.31

Abstract

Sequential quadratic programming (SQP) has been one of the most important methods for solving nonlinear constrained optimization problems. Recently, filter method, proposed by Fletcher and Leyffer, has been extensively applied for its promising numerical results. In this paper, we present and study an active set SQP-filter algorithm for inequality constrained optimization. The active set technique reduces the size of quadratic programming (QP) subproblem. While by the filter method, there is no penalty parameter estimate. Moreover, Maratos effect can be overcome by filter technique. Global convergence property of the proposed algorithm are established under suitable conditions. Some numerical results are reported in this paper.

Keywords

References

  1. C. Audet and J. E. Dennis, A patter search filter method for nonlinear programming without dereivatives, SIAM J. Optim. (2004), no. 1, 980-1010.
  2. J. F. Bonnons, E. R. Painer, A. L. Titts and J. L. Zhou, Avoiding the Maratos effect by means of nonmontone linesearch, Inequality constrained problems-feasible iterates, SIAM J. Numer. Anal. (1992), no. 29, 1187-1202. https://doi.org/10.1137/0729072
  3. P. T. Boggs, J. W. Tolle and P.Wang, On the local convergence of quasi-newton methods for constrained optimization, SIAM J. Contr. Optim. (1982), no. 20, 161-171. https://doi.org/10.1137/0320014
  4. R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Program. (2002), no. 91, 239-269. https://doi.org/10.1007/s101070100244
  5. R. Fletcher, S. Leyffer and P. L. Toint, On the global convergence of a filter-SQP algorithm, SIAM J. Optim. (2002), no. 13, 44-59. https://doi.org/10.1137/S105262340038081X
  6. R. Fletcher and S. Leyffer, A boundle filter method for nonsmooth nonlinear optimization, Technical Report NA/195, Department of Mathematics, University of Dundee, Scotland, December, 1999.
  7. R. Fletcher, N. I. M. Gould, S. Leyffer, P. L. Toint and A.Wachter, Global convergence of a trust region SQP-filter algorithm for general nonlinear programming, SIAM J. Optim. (2002) no. 13, 635-660. https://doi.org/10.1137/S1052623499357258
  8. S. P. Han, Superlinearly convergence variable metric algorithm for general nonlinear programming problems, Math. Program. (1976) no. 11, 263-282. https://doi.org/10.1007/BF01580395
  9. S. P. Han, A globally convergent method for nonlinear programming, J. Optim. Theory Appl. (1977) no. 22, 297-309. https://doi.org/10.1007/BF00932858
  10. W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Lecture notes in econom. and math. systems, 187, Springer-Verlag, Berlin, 1981.
  11. X. W. Liu, Global convergence on an active set SQP for inequality constrained optimization, J. Comput. Appl. Math. (2005) no. 180, 201-211. https://doi.org/10.1016/j.cam.2004.10.012
  12. P. Y. Nie and C. F. Ma, A trust region filter method for general nonlinear programming, Appl. Math. Comput. (2006) no. 172, 1000-1017. https://doi.org/10.1016/j.amc.2005.03.004
  13. M. J. D. Powell, A fast algorithm for nonlinear constrained optimization calculations, in Waston, G. A. (Ed.). Numerical Analysis, Springer-Verlag, Berlin. pp.144-157, 1978.
  14. M. J. D. Powell, Variable metric methods for constrained optimization, in Bachen et al.(Eds.). Mathematcal programming-The state of art, Springer-Verlag, Berline. 1982.
  15. M. J. D. Powell, The convergence of variable metric methods for nonlinear constrained optimiation calculations, in: O. L. Mangasarian, R. R. Meyer, S. M. Robinson(Eds.) Nonlinear Programming 3, Academic Press, New York, pp.27-63, 1978.
  16. J. Stoer, Principles of sequential quadratic programming methods for solving nonlinear programs, in: K. Schittkawsk;(Ed.) NATO ASI Series, vol. F15, Computational Mathematical Programming, Springer, Berlin.
  17. M. Ulbrich and S. Ulbrich, Nonmonotone trust region method for nonlinear equality constrained optimization without a penalty function, Math. Program., Ser B (2003). 103-113.
  18. M. Ulbrich, S. Ulbrich and L. N. Vicente, A global convergent primal-dual interior filter method for nonconvex nonlinear programming, Math Program. (2004) no. 100, 379-410. https://doi.org/10.1007/s10107-003-0477-4
  19. A. Watcher and L. T. Biogle, Line search filter methods for nonlinear programming:motivation and global convergence, SAIM J. Optim. (2005) no. 16, 1-31. https://doi.org/10.1137/S1052623403426556
  20. A. Wathcer and L. T. Bigole, Line search filter methods for nonlinear programming: local convergence, SIAM J. Optim. (2005), no. 16, 32-48. https://doi.org/10.1137/S1052623403426544