• Title/Summary/Keyword: Peak force

Search Result 732, Processing Time 0.033 seconds

Continuous Contact Force Model for Low-Speed Rear-End Vehicle Impacts (차량 저속 추돌의 연속 접촉력 모델)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2006
  • The most common kind of vehicular accident is the low-speed rear-end impact that result in high portion of insurance claims and Whiplash Associated Disorders(WAD). The low-speed collisions have specific characteristics that differ from high speed collisions and must be treated differently This paper presents a simple continuous contact force model for the low-speed rear-end impact to simulate the accelerations, velocities and the contact force as functions of time. A smoothed Coulomb friction force is used to represent the effect of braking, which was found to be significant in simulating low-speed rear end impact. The intervehicular contact force is modeled using nonlinear damping and spring elements with coefficients and exponents. This paper presents how to estimate analytically stiffness and damping coefficients. The exponent of the nonlinear contact force model was determined to match the overall acceleration pulse shape and magnitude. The model can be used to determine ${\Delta}Vs$ and peak accelerations for the purpose of accident reconstruction and for injury biomechanics studies.

The Effects of Shoe Type on Ground Reaction Force

  • Yi, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The purpose of this study is to analyze the effects of both various shoe types and bare feet on ground reaction force while walking. Ten first-year female university students were selected. A force platform(Kistler, Germany) was used to measure ground reaction force. Six types of shoe were tested: flip flops, canvas shoes, running shoes, elevated forefoot walking shoes, elevated midfoot walking shoes, and five-toed shoes. The control group was barefooted. Only vertical passive/active ground reaction force variables were analyzed. The statistical analysis was carried out using the SAS 9.1.2 package, specifically ANOVA, and Tukey for the post hoc. The five-toed shoe had the highest maximum passive force value; while the running shoe had the lowest. The first active loading rate for running shoes was the highest; meanwhile, bare feet, the five-toed shoe, and the elevated fore foot walking shoe was the lowest. Although barefoot movement or movement in five toed shoes increases impact, it also allows for full movement of the foot. This in turn allows the foot arch to work properly, fully flexing along three arches(transverse, lateral, medial), facilitating braking force and initiating forward movement as the tendons, ligaments, and muscles of the arch flex back into shape. In contrast movement in padded shoes have a tendency to pound their feet into the ground. This pounding action can result in greater foot instability, which would account for the higher loading rates for the first active peak for padded shoes.

이온 에너지 분석을 통한 저손상 그래핀 클리닝 연구

  • Kim, Gi-Seok;Min, Gyeong-Seok;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.218.2-218.2
    • /
    • 2014
  • 그래핀은 높은 전기 전도도와 열전도도, 기계적 강도를 가지고 있고 동시에 높은 전자이동도($200,000cm^2{\cdot}V{\cdot}^1{\cdot}s{\cdot}^1$) 특성을 갖는 물질로써 차세대 소재로 각광받고 있다. 하지만 그래핀을 소자에 응용하기 위해서는 전사공정과 lithography 공정 과정에서 발생되는 PMMA(Poly methyl methacrylate) residue를 완벽하게 제거해야 하는 문제점이 있다. 특히, lithography 공정 중 완벽하게 PMMA residue 가 제거되지 않고 잔류해 있을 경우에 소자의 life time, performance에 악영향을 준다는 보고가 있다. 이와같은 문제를 해결하기 위해 화학적 cleaning, 열처리를 통한 cleaning, 전류 인가에 의한 cleaning과 같은 방법들을 이용하여 그래핀의 PMMA residue를 제거하는 공정들이 보고되고 있지만, 화학적 cleaning 방법의 경우 chloroform 이라는 독성물질 사용으로 인해 산업적으로 응용이 어렵고, 열처리 방법은 전극 등의 금속이 $200^{\circ}C$ 이상의 높은 온도에서 장시간 노출될 경우 쉽게 손상을 입으며, 전류 인가에 의한 cleaning 방법은 국부적으로만 효과를 볼 수 있기 때문에 lithography 공정 후 PMMA residue를 효과적으로 제거하기에는 한계를 보이고 있다. 본 연구에서는 Ar을 이용하는 Ion beam 시스템을 통해 beam energy를 제어함으로써 PMMA residue를 효과적으로 제거하는 연구를 진행하였다. 최적화된 플라즈마 발생 조건을 찾기 위해 QMS(Quadrupole Mass Spectrometer)를 이용하여 입사하는 ion energy와 flux 양을 컨트롤 하였고, 250 W에서 최적화된 ion energy distribution 영역이 존재한다는 것을 확인할 수 있었다. 또한, 25 Gauss 정도의 electro-magnetic field를 이용하여 Ar의 ion energy를 10 eV 이하로 낮추어 damage를 최소화함으로써 효과적으로 그래핀을 cleaning 할 수 있었다. Cleaning과정에서 ion bombardment에 의해 발생한 damage는 $250^{\circ}C$에서 6시간 동안 annealing 공정을 거치면서 회복되는 것을 Raman spectroscopy의 D peak ($1335cm{\cdot}^1$) / G peak ($1572cm{\cdot}^1$) ratio 로 확인할 수 있었고, PMMA residue의 cleaning 여부는 G peak ($1580cm{\cdot}^1$)의 blue shift와 2D peak ($2670cm{\cdot}^1$)의 red shift를 통해 확인하였다. 그리고 AFM (Atomic Force Microscopy)을 이용하여 cleaning 공정과정에서 RMS roughness가 4.99 nm에서 2.01 nm로 감소하는 것을 관찰하였다. 마지막으로, PMMA residue의 cleaning 정도를 정량적으로 분석하기 위해 XPS (X-ray Photoelectron Spectroscopy)를 이용하여 sp2 C-C bonding이 74.96%에서 87.66%로 증가함을 확인을 할 수 있었다.

  • PDF

The Immediate Effects of Unilateral Contract-Relax Stretching on Contralateral Knee Extension Range -A Preliminary Study- (한쪽 다리에 적용한 수축-이완 기법이 반대쪽 무릎관절 폄 범위에 미치는 효과 -예비연구-)

  • Shin, Seung-Sub
    • PNF and Movement
    • /
    • v.17 no.2
    • /
    • pp.263-274
    • /
    • 2019
  • Purpose: This article was conducted to determine the immediate effects of unilateral contract-relax (CR) stretching on contralateral knee extension range and to compare both sides of the knee extension range between experimental and control groups. Methods: This study recruited 16 adult males and females with straight leg raising abilities below $90^{\circ}$. The subjects were randomly divided into an experimental group and a control group comprising 8 subjects each. The experimental group performed direct CR stretching on the right hamstring muscles with straight hip extension adduction, and the control group performed indirect CR stretching on the right hamstring muscles with straight hip flexion abduction. Each group performed CR stretching 4 times with 4 repetitions comprising 10 sec of contraction and a 10 sec break between repetitions. Before and after the CR stretching exercises, the subjects' passive knee extensions were measured at the hip in a $90^{\circ}$ flexed position. The subjects' peak force on the right leg and peak pressure on the left leg during each CR stretching exercise were also measured. Results: After doing CR stretching 4 times, each group showed a significantly increased passive knee extension range on both sides, and there was no difference in the passive knee extension ranges between the groups. The peak force on the right leg was significantly higher in the experimental group than the control group. There was no difference in peak pressure between the groups. Conclusion: After applying unilateral CR stretching, the study subjects experienced a significantly increased passive knee extension range on the contralateral side. For patients who find it difficult to apply stretching techniques to knee joints directly, the use of the proprioceptive neuromuscular facilitation technique of CR stretching may be useful in improving the range of the knee joint on the contralateral side without direct treatment.

Effect of Bone Quality on Insertion Torque during Implant Placement; Finite Eelement Analysis (임플란트 식립 시 골질이 주입회전력에 미치는 영향에 관한 삼차원 유한요소 분석)

  • Jeong, Jae Doug;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.109-123
    • /
    • 2009
  • The aim of the study was to assess the influence of insertion torque of bone quality and to compare axial force, moment and von Mises stress using finite element analysis of plastoelastic property for bone stress and strain by dividing bone quality to its thickness of cortical bone, density of trabecular bone and existence of lower cortical bone when implant inserted to mandibular premolar region. The $Br{\aa}nemark$ MKIII. RP implant and cylindrical bone finite model were designed as cortical bone at upper border and trabecular bone below the cortical bone. 7 models were made according to thickness of cortical bone, density of trabecular bone and bicortical anchorage and von Mises stress, axial force and moment were compared by running time. Dividing the insertion time, it seemed 300msec that inferior border of implant flange impinged the upper border of bone, 550msec that implant flange placed in middle of upper border and 800msec that superior border of implant flange was at the same level as bone surface. The maximum axial force peak was at about 500msec, and maximum moment peak was at about 800msec. The correlation of von Mises stress distribution was seen at both peak level. The following findings were appeared by the study which compared the axial force by its each area. The axial force was measured highest when $Br{\aa}nemark$ MKIII implant flange inserts the cortical bone. And maximal moment was measured highest after axial force suddenly decreased when the flange impinged at upper border and the concentration of von Mises stress distribution was at the same site. When implant was placed, the axial force and moment was measured high as the cortical bone got thicker and the force concentrated at the cortical bone site. The influence of density in trabecular bone to axial force was less when cortical bone was 1.5 mm thick but it might be more affected when the thickness was 0.5 mm. The total axial force with bicortical anchorage, was similar when upper border thickness was the same. But at the lower border the axial force of bicortical model was higher than that of monocortical model. Within the limitation of this FEA study, the insertion torque was most affected by the thickness of cortical bone when it was placed the $Br{\aa}nemark$ MKIII implant in premolar region of mandible.

The Relationship between Lifetime Sports Activity Measured with MET and Peak Strain Score and Bone Measurement in College-aged Women (대사당량(MET)과 최대긴장력(Peak Strain Score)에 근거하여 측정한 스포츠 활동량과 여대생의 요골 골밀도와의 상관성)

  • Lee, Eun-Nam;Choi, Eun-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.38 no.5
    • /
    • pp.667-675
    • /
    • 2008
  • Purpose: The aim of this study was to compare the relation between differently measured sports activities (metabolic equivalent [MET] and peak strain score) and distal radius bone mineral density in college-aged women. Methods: lifetime sports activity was scored in two different ways: 1) a sports activity score by multiplying the intensity (METs) and duration and 2) a sports activity score by adding up physical strain scores based on the ground reaction force of each sports activities. Bone mineral density was measured using dual energy x-ray densitometry (DTX-200) in the distal radius site. Results: In stepwise multiple regression analysis, body weight and sports activities during the college period were significant positive predictors for distal radius bone mineral density. The explained variance of sports activity measured with a peak strain score (8.8%) for distal radius bone mineral density was higher than one measured with the MET score (3.3%). Conclusion: It can be concluded that sports activity scores based on MET and peak strain scores during college are very important for determining the bone mineral density in the distal radius site in women under 30.

Effects of Clubhead Velocity on GRF Magnitude and Time during 7-iron Swing (골프스윙 시 지면반력 크기와 시간 차이가 클럽헤드 속도에 미치는 영향)

  • Woo, Byung Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.27-35
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the influence of clubhead velocity through regression analysis on the magnitude and time difference of the forward-backward, mediolateral, and vertical ground reaction peak forces generated by force plate during golf swing. Method: 16 subjects (age: 20.5±4.2 yrs, height: 176.0±5.4 cm, weight: 77.8±5.9 kg, handy: 2.4±1.7) who is elite golf player in high school and university, participated in this study. The study method adopted three-dimensional analysis with 8 cameras and ground reaction force measurement with two force plate. The analysis variables were clubhead velocity, and ground reaction analysis variables set four events in each graph based on the peak forces commonly generated in Fx, Fy, and Fz graphs of the ground reaction data during the golf swing. Results: As a result of analyzing the influence of ground reaction magnitude difference on clubhead velocity, the influence on clubhead velocity was ym4, zm1, xm4, zm2. The larger ym4, xm4, zm1, the fasterthe clubhead velocity, but the smallerthe zm2, the faster the clubhead velocity. And in time difference, the influence on the clubhead velocity was in the order of xt4, zt1, zt3. The shorter xt4, zt1, zt3 showed faster clubhead velocity. Conclusion: The leftfoot played a leading role in increasing the velocity of the clubhead. Although the result was caused by the interaction of the right foot and the left foot during the swing, the role of the left foot is relatively large.

The effect of varying peripheral bone structure and bone density on the occlusal stress distribution of human premolar regions (사람 소구치부위에서 주위골의 구조 및 밀도변화가 교합력에 의한 치아의 응력분포에 미치는 영향)

  • Suh, Ye-Joon;Shim, June-Sung;Lee, Keun-Woo;Chung, Moon-Kyu;Lee, Ho-Yong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.7-15
    • /
    • 2003
  • This study used FEM(Finite Element method) based on micro-CT images to see the effects of occlusal force distribution with varying bone density and structure. the mandibular premolar region from human cadaver, thickness of 10mm was imaged using micro-CT. the cross sectional images were taken every $10{\mu}m$. these were reconstructed and the longitudinal image at the mid point of mesiodistal of the speciman was obtained for the specimen for the FEM. The stress disribution produced by a vertical force at 100N and 100N horizontal were analyzed by MSC Nastran FEM Package. according to the result of this study the occlusal force distribution depends on the structure of cancellus bone and for further information on the occlusal force distribution on the tooth and the surrounding structure requires further studies on cancellus bone structure. CEJ of all model show the highest peak and region whice meet teeth and bone show second high peak. Original model and cortical bone add model show different stress distribution. Stress distribution changed according to bone structures and densities.

The Study of the Mid-sole Wedge of Pronated Group on Maximum Force and Foot Pressure (중족부 Wedge 착용 시 회내 집단의 최대 힘과 족저압력 연구)

  • Lee, Jae-Ik;Lee, Hyo-Taek;Kim, Yong-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.337-344
    • /
    • 2010
  • This study was conducted on male college students with pronated foot to measure the foot pressure by having them wear three kinds of mid-sole wedge ($0^{\circ}$, $5^{\circ}$, $10^{\circ}$). Maximum force, foot contact area, mean pressure and peak pressure were measured using a foot pressure distribution measuring instrument. And the surface of the foot sole was divided into 10 areas. Regarding maximum force, there were statistically significant difference in the area 3 of the middle foot(p<.05). Regarding the foot contact area, it appeared broad in the outside area(1, 3, 5) of the foot according to mid-sole wedge, and there was statistically significant difference in the area 1 of the rear foot(p<.05) and the area 3 of the middle foot(p<.05). Mean pressure by foot area decreased in the inside of the foot according to mid-sole wedge, and there was statistically significant difference in the area 2 of the rear foot(p<.05) and the area 3 of the middle foot(p<.05). Regarding the peak pressure by foot area, the pressure roughly decreased in the inside area(2, 4, 7) of the foot according to mid-sole wedge, and there was statistically significant difference in the area 1(p<.05), 2(p<.05) of the rear foot and the area 3 of the middle foot(p<.05).

Relationship between Dimensionless Leg Stiffness and Kinetic Variables during Gait Performance, and its Modulation with Body Weight

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.249-255
    • /
    • 2016
  • Objective: This purpose of this study was to analyze the relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Method: The study sample consisted of 10 young women divided into 2 groups (Control, n=5 and Obese, n=5). Four camcorders (HDR-HC7/HDV 1080i, Sony Corp, Japan) and one force plate (AMTI., USA) were used to analyze the vertical ground reaction force (GRF) variables, center of pressure (COP), low limb joint angle, position of pelvis center and leg lengths during the stance phase of the gait cycle. Results: Our results revealed that the center of mass (COM) displacement velocity along the y-axis was significantly higher in the obese group than that in control subjects. Displacement in the position of the center of the pelvis center (Z-axis) was also significantly higher in the obese group than that in control subjects. In addition, the peak vertical force (PVF) and dimensionless leg stiffness were also significantly higher in the obese group. However, when normalized to the body weight, the PVF did not show a significant between-group difference. When normalized to the leg length, the PVF and stiffness were both lower in the obese group than in control subjects. Conclusion: In the context of performance, we concluded that increased dimensionless leg stiffness during the gait cycle is associated with increased velocity of COM, PVF, and the change in leg lengths (%).