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The effect of varying peripheral bone structure and bone density

on the occlusal stress distribution of human premolar regions

Suh Ye-Joon, Shim June-Sung, Lee Keun-Woo, Chung Moon-Kyu, Lee Ho-Yong
Dept. of Prosthodontics, Oral Science Research center, College of Dentistry, Yonsei University

This study used FEM(Finite Element method) based on micro-CT images to see the effects of occlusal force
distribution with varying bone density and structure. the mandibular premolar region from human cadaver, thickness
of 10mm was imaged using micro-CT. the cross sectional images were taken every 10um. these were reconstructed
and the longitudinal image at the mid point of mesiodistal of the speciman was obtained for the specimen for the
FEM. The stress disribution produced by a vertical force at 100N and 100N horizontal were analyzed by MSC
Nastran FEM Package. according to the result of this study the occlusal force distribution depends on the structure
of cancellus bone and for further information on the occlusal force distribution on the tooth and the surrounding
structure requires further studies on cancellus bone structure. CEJ of all model show the highest peak and region
whice meet teeth and bone show second high peak. Original model and cortical bone add model show different

stress distribution. Stress distribution changed according to bone structures and densities.

Key words : Occlusion, stress distribution, microCT, Cervical abfraction, FEM

* This work was supported in part by Yonsei University College of Dentistry Fund of 2001.




2F A —| | o Xo|lado > O
Atz 27X 220 2= = 2
OlcCH{S St O|SF = o] @giHd 11
= THaUF weto| ofet x[ote| SHEZ
| = O &
O|x[= A&k
AMen X2 HAGWA AT A
Mo|EAFEMOIZRHEET0TE
.M 2 b HellA WolE XAl H ATk Leed} Eakle'
& S oA o}t A "k S V)
H|- -2 A 45 A3k A o}-9-253 F-33gk 4] Z2 Gl a5 dlojgh= Ho R A4 5}3l
A Aotz A4S ou|stn AdQledlA t}. B ke Whitehead, McCaughey’ &= 47} =2
30-40% 4= WAFCL! 944 2] EAFe & W= AJofol A dojupm o EkS WhA] gk Ao}
Qlo] whe}A abrasion, attrition, erosion, abfraction . ]/\1‘: dojux] g=the=4, Atz dojit
2 B’ 1980 o] Aol ol g 4o Yol © A 55 IHZ AASHY tooth-flexure theory
o7 ol&de ok npr, A HA|, Akl o]k F £ ARS8

AL &, 9, ool 55 & F A Abfraction®] 7] o2 A7bEE= Az ot
Rout G7tE e 7] FEHe Wiy A5t z)ote] ¥ FEXE dotH iz AFA R Q)Fe}
g}t HAS5e olgld AR AdYyr] oYt 7] 918kl o] 74A AlETt glef gk Asundlg‘r
Lehman®} Meyer’ 7} ©]2]3F B9 4910 2 stress Kishen®ol] ¢]3}o] Bebd 413} strain gauges-2] <

S 74389031, Eakled} Lee' 5-& o]eldt o 1
HAAZATE ©]F 1991 Grippo = ol 2] 3k wghe o
= g gl o3 A G- S abfraction ©]
ghe ol WHsiglon, ot ods AuE
™ breaking away ZHe S 7FA I 9tk

ol gt RS AXA VA FEo H]-2A4 A
EAL ool = A=l 9g FAlolu, 7}\%
Aol 2]k abrasion©] Floletar A7LE oL,
e wetol A L= stress7F A doll W PS5
S 7102 CEJ(Cemento-enamel junction)ol] A &
Zo] stajef sHt oA AAE At
occlusal stress theory7} 1 11 0 & Hro}Eof x| o
AAA © = =erosion, abrasion, piezoelectric effects,

stress corrosion@} B3z o 7 WAty A ZtE 1

(

;é]

Orﬂ

0&‘3

Atk ugtol] oA LA stress7F o] 23 HAE
o7 H= o] 22 Wil FHo} A% AYrls

A BEAo] #H e

R

T7F A% HAT G
w2t 9 JAE Azt ehed &
olt}, Az}A o7 z|olol A2 stress
ato] 229, 3L A QL A o] o] F
Fekd A2 elastic modulivhS A
inelastic behaviourel] thd+ A5 e}
zﬂ- I;}ooh‘;l_ QAE xﬁl}\]
olgf g AleFol A fFretaid
Ll ol%, 7AET,
== /\}&Q‘fﬂ < A
/HJ‘ Farah’ o 98] ]S A]
e ZH FA o] Bibel g

1%

stress

o

rr

o ©
== T W )

n{o

met ¥ M o o

T
)

ol ¢ M
S

¥

] e
=
HoEe
yo W

off oot

|
L
o

.

PN
7
QAR

1%
rlo

1\

=
DN
offt rL
28

I
J

3
i)
ol
o,
&V

é
i)

> oft Hi
o
i w2 do JT

o

52
=)

P sl 9

= o), 9

E’_
o
o,



ob xlote] SHEZO O|x= IF

°
of

212l o

ol
=]

[E]

s}7}

oK

Ak 2FAIEL0M FolBe X

Ealll
00

oK

H

Bl
i

5

A A
1A ol

=
=
5

Aolol A 2. Wt

54

SRECERE!

717}

O = o
TS o8
1

ot e

R
=

31, PDLO]

X

+

;OE

1.

= A7

o

ojpy

o200 gl o}

9

Aol 7bs

158 Ao

3]

7o

1
L

I, stress7} 55

< AAsth

3

/\]ll’

B

10mm 7=

o1&

Bl
o0
0
Pl

Bl
A

B!
)

T

o Al

4.

o, 7]

?l_

Aol 8

‘ijl

RREEE S

o
=

]

5

Al

A2}

B

FIOEEREE

Nk

Ao
1=

oz A7A e

74

olg 4

BE
o)
e
"~
ol

ol
=W

G

oy o

=13
=

3

3L 9tk Feldkamp'*ol] <]

131t Meshing Al %] #H5-€]

o

o] A&

FEM

IH3FE T Nastran

doz ATHE + 9

ThA] 33}

=
=

B

o

—_—

0
il

B
o}

</

X

o)

el

Ay

=
o

tomograpy

& BHow A2x obr 5

A

I

How A

I

o

o =

m)

ol

o
E‘

ojz o

) J
g
"

b, o] MARFE 95 &

©] Computed Tomography”} 1mm<]
=]

=

fu
1
R

7
H o]

al
Kol
=

Foie. e of

Z+E

Els

A

—_
fite)

ol

to] 12714 ¢

3

12!
EN

T35 A

12T} (Fig.1-4.)

5

A=t

].

A

ZAY o A7) gol} s

o] Wkl Azt

oL
=

o #2437 100N ]
MSC.Nastran FEM Package =

R

3 100N

Aol 7f
©
o 1

75

!

TS

g

o 9

o

ofp

il
il

o

oF W B%
— o
= <
W

driur_
o X
o P
Eo1_..__.o7
o Z\#
dOE@Ot
RN
B A o
%Wﬂw
B oz
@ £
EISGS
B o o
o B
5o P
o] ™
=3 T
N T T
%0 T TR
‘WO .
iy
o T g
M M o
I
= X
LR
% HU go
Mﬂa‘._ﬂ,a
OE\%O‘Z_O
OB W
" HE
T e HE
n S~
T —
] T
o W w
_ﬂ_u_iﬂl
oWzli
T oF 6
(=i~

3z
=
5

oup 2 Aol A Fe| Fxs

o]
A

oo
w= T

P
T

1Atk (Table.2.).

o

B

< A



10 Moz

pulp

aniso

boundary condition 1

\&

\&

\

no_pulp

S0

boundary
condition 2

—————

whether pulpal
structure was
induded

property of
enamel

fixation level as
a boundary

condition

Fig. 1. Preliminary study plot for selecting a model. As a result, anisotropic, boundary condition

1, and no pulp model was selected

thickness of

original bone add bone = |---------- > cortical bone
density of
cancellous bone
Dl1bone homogeneous base 10% 20% 30%

Fig. 2. Experimental design of study. All 12 model were simulated

Fig. 3. Original bone were changed to 6 models. A was D1 model which cortical bone was applied to

all bone. B was homogeneous model which was cancellous bone was applied to all bone. C was

base DEF was

model

which was

applied no

models

10%,20%,30% of cancellous bone area compared to base model respectively.

which

randomly

extracted
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Fig. 4. Add bone were changed into 6 models. Added cortical bone was shown in circle compare to
Fig.3.. A was D1 model which cortical bone was applied to all bone. B was homogeneous model
which was cancellous bone was appliedto all bone. C was base model which was applied no
change. D,EF was models which randomly extracted 10%,20%,30% of cancellous bone area
compared to base model respectively.

Table 1. Model index

Condition Code explanation
Isotropic Iso model which enamel is isotropic. E = 80 GPa
Anisotropic Aniso mod_el which ename_l is anisotropic.
Ex = 80 GPa, Ey = 20 GPa.
Original model ori model which modeled with micro CT
Add bone model add model which add cortical bone regulary for intention because cortical bone is irregular
Boundary cond. 1 bel model which contition that lower bone is fixed fully
Boundary cond. 2 be2 model which contition that middle bone is fixed fully
D1 bone DI model which property of cortical bone is applied to all bone. E = 13.8 GPa
Homogeneous equ model which property of cancellous bone is applied to all bone, E = 0.345 GPa
Base model base Basic model which made with micro CT
10% 10% model which randomly extracted 10% of cancellous bone area compared to base model
20% 20% model which randomly extracted 20% of cancellous bone area compared to base model
30% 30% model which randomly extracted 30% of cancellous bone area compared to base model
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Table 2. Physical properties of the materials

used in the analysis.20,21

Material E(MPa) v(poissons's ratio)
Enamel(Ex) 80000 0.30
Enamel(Ey) 20000 0.30
Dentin 15000 0.31
Cortical bone 13800 0.26
Cancellous bone 345 0.31
Periodontal lig. 50 0.49

axial force 100N+lateral force 100N
Load condition
distributed force 25N* 4= 100N
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Fig. 5. Figure of stress distribution of anisotropic base model (boundary condition 1, no pulp)

Fig. 6. Figure of stress distribution of anisotropic cortical bone added model (boundary condition

1, no pulp)
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Fig. 7. A Path along which calculated von mises
equivalant stress were compared.
number 1 in figure indicates labial CEJ,
number2 indicates root surface at buccal
bone crest level. And number 3 indecates
root surface at lingual bone crest level
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Anisotropic addbone bel

Fig. 8. Graph of calculated von Mises equivalant
stress along the path in Fig.3. for
Anisotropic  cortical bone added model.
Positive stress values mean tensile and
negative mean compressive in  nature
respectively.

Anisotropic original bel

Diistaioe Alovg Node Path

Fig. 9. Graph of calculated von Mises equivalant
stress along the path in Fig.3 for
anisotropic original bone model.

Fig. 10. Graph of calculated von Mises equivalant
stress along the path in Fig.3 for
Anisotropic and isotropic original bone
model.
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