• Title/Summary/Keyword: Peak Sidelobe Level

Search Result 21, Processing Time 0.019 seconds

Analysis on Spectral Regrowth of Bandwidth Expansion Module by Quadrature Modulation Error in Digital Chirp Generator (디지털 첩 발생기에서의 직교 변조 오차에 의한 대역 확장 모듈에서의 스펙트럴 재성장 분석)

  • Kim, Se-Young;Sung, Jin-Bong;Lee, Jong-Hwan;Yi, Dong-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.761-768
    • /
    • 2010
  • This paper presents an effective method to achieve the wideband waveform for high resolution SAR(Synthetic Aperture Radar) using the frequency multiplication technique. And also this paper analyzes the root causes for the spectral regrowth due to 3rd-order intermodulation in chirp bandwidth expansion scheme using quadrature modulator and frequency multipliers. The amplitude and phase imbalance requirement are defined based on the simulation results in terms of quadrature channel imbalance. This minimizes the degradation of range resolution, peak sidelobe ratio and integrated sidelobe ratio. The wideband chirp generator using the frequency multiplier and memory map scheme was manufactured and the compensation technique was presented to reduce the spectral regrowth of SAR waveform by minimizing the amplitude and phase imbalance. After I and Q channel imbalance adjustment, the carrier level reduces -28.7 dBm to -53.4 dBm. Chirp signal with 150 MHz bandwidth at S-band expands to 600 MHz bandwidth at X-band. The sidelobe levels are reduced by about 8 to 9 dB by compensating the amplitude balance between I and Q channels.

A Study on Hydrophone Array Design Optimization for Cavitation Tunnel Noise Measurements (캐비테이션 터널 시험용 청음기배열 최적 설계기법)

  • Park, Cheolsoo;Seol, Hanshin;Kim, Gundo;Park, Youngha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.237-246
    • /
    • 2013
  • This paper proposes a hydrophone array design optimization technique for cavitation tunnel noise measurements. The optimization technique comprises of design parameters, an objective function and an optimization algorithm. The design parameters are defined for circular, spiral and multi-spiral arrays. The objective function is defined so as to consider the mainlobe beamwidth and the maximum sidelobe level simultaneously. A global optimization scheme is applied to the array design using very fast simulated reannealing (VFSR). After applying the optimization technique to arrays respectively, the peak sidelobe level and the mainlobe beamwidth of optimum arrays are analyzed. Finally the array patterns considering multiple reflections in the cavitation tunnel are evaluated to validate the proposed method.

A Study of Broad-band Conformal Beam Forming using Moving Least Squares Method (Moving Least Squares 기법을 이용한 광대역 컨포멀 빔 형성 연구)

  • Jung, Sang-Hoon;Lee, Kang-In;Jung, Hyun-Kyo;Chung, Young-Seek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.83-89
    • /
    • 2019
  • In this paper, beam forming using moving least squares method (MLSM) is studied. In the previous research, the least squares method (LSM), one of the data interpolation methods, was used to determine the desired beam pattern and obtain a beam pattern that minimizes the square of the error with the desired beam pattern. However, LSM has a disadvantage in that the beam pattern can not be formed to satisfy the exact steering angle of the desired beam pattern and the peak sidelobe level (PSLL) condition. To overcome this drawback, MLSM is used for beam forming. In order to verify, the proposed method is applied in beam forming of Bezier platform array antenna which is one of conformal array antenna platform.

SAW Serial Type AWQPSK Modulator (탄성표면파 직렬형 AWQPSK 변조기)

  • Ha, Jun-Ho;Kim, Geun-Muk;Park, Yong-Seo;Hwang, Geum-Chan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.43-51
    • /
    • 1987
  • In this work an implementation of SAW based serial type AWQPSK modulator is studied. The SAW AWQPSK modulator consisting of input apodized IDT and output uniform IDT with center frequency of 20 MHz and bit rate of 4MHz has been designed and fabricated on $YZ-LiNbO_3$ substrate. Measured center frequency and null-to-null bandwidth are 20MHz, respectively. The sidelobe suppression is achieved 60dB below the peak mainlobe level. Measured responses meet the theoretical values with tolerable amount of deviation. SAW-based modulator simplifies the implementation of AWQPSK which uses complex pulse shape as a baseband pulse.

  • PDF

Accurate Characterization of T/R Modules with Consideration of Amplitude/Phase Cross Effect in AESA Antenna Unit

  • Ahn, Chang-Soo;Chon, Sang-Mi;Kim, Seon-Joo;Kim, Young-Sik;Lee, Juseop
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.417-424
    • /
    • 2016
  • In this paper, an accurate characterization of a fabricated X-band transmit/receive module is described with the process of generating control data to correct amplitude and phase deviations in an active electronically scanned array antenna unit. In the characterization, quantization errors (from both a digitally controlled attenuator and a phase shifter) are considered using not theoretical values (due to discrete sets of amplitude and phase states) but measured values (of which implementation errors are a part). By using the presented procedure for the characterization, each initial control bit of both the attenuator and the phase shifter is closest to the required value for each array element position. In addition, each compensated control bit for the parasitic cross effect between amplitude and phase control is decided using the same procedure. Reduction of the peak sidelobe level of an array antenna is presented as an example to validate the proposed procedure.

Synthetic Aperture Sonar for Conformal Towed Array (왜곡된 형상을 갖는 어레이를 위한 합성 처리 기법)

  • 김준환;양인식;김기만;오원천;도경철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.77-83
    • /
    • 2000
  • The previous synthetic aperture techniques have been investigated to increase signal gain, improve angular resolution and peak-to-sidelobe level ratios for towed line array sonar systems. The synthetic aperture method in this paper is performed for conformal array systems by mapping real elements on an axis to control like a linear array. The proposed method for the conformal array performs coherent processing of subaperture signals at successive time intervals in the beam domain via FFT transformations. This was confirmed by the simulation results and compared to the results from use of the synthetic aperture technique under the conformal array.

  • PDF

Experimental Study of Second Harmonic Ultrasound imaging with a Weighted Chirp Signal (가중 쳐프 신호를 사용한 초음파 고조파 영상 기법의 실험적 고찰)

  • 김동열;이종철;송태경
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.151-154
    • /
    • 2001
  • In this Paper, a new harmonic imaging technique is proposed and evaluated experimentally. In the proposed method, a weighted chin signal with a hanning window is transmitted. The RF samples obtained on each array element are individually compressed by correlating with the reference signal defined as the 2nd harmonic (2f0) component of a transmitted chirp signal generated in a square-law system. The proposed method uses the compressed 2f0 component to form an image, for which the crosscorrelation term with f0 component should be suppressed below at least -60dB. After experiment, the 6dB pulse width and peak sidelobe level of the compressed 2f0 component were 0.7us and -60dB, respectively. This result shows that the proposed method can successfully eliminate the f0 component with a single transmit-receive event and therefore is more efficient than the conventional pulse inversion (PI) method in terms of frame rate. We also observed that the 2nd harmonic compont starts to decrease for source pressure higher than 210kPa in water, which implies that SNR of the 2nd harmonic imaging using short pulses cnanot be incresed beyond a certain limit.

  • PDF

A Study on Improving the Correlation Characteristics of a Ternary Sequence (삼치 시퀀스의 상관함수 특성 개선 연군)

  • 권성재
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2002.11a
    • /
    • pp.407-411
    • /
    • 2002
  • Ternary sequences are digital codes consisting of discrete values -1, 0, and 1 only. They are advantageous in that the correlation can be carried out using additions only. Also, they feature an ideal circular autocorrelation function, but in channel characterization tasks, the usual requirement is that the linear autocorrelation function be ideal, i.e., a Kronecker delta function. In this article, we consider two approaches to improving their linear autocorrelation or crosscorrelation properties: one is an inverse filtering method with thresholding, and the other is a singular value decomposition (SVD) method. Both methods are simulated under noisy circumstances. The inverse filtering method resulted in an improvement in peak sidelobe level of about 11 dB at an SNR of 30 dB, and the SVD method showed similar performances, albeit more sensitive to noise depending on the singular value selection strategy.

  • PDF

A Study on Improving the Correlation Characteristics of a Ternary Sequence (삼치 시퀀스의 상관함수 특성 개선 연구)

  • 권성재
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.11a
    • /
    • pp.407-411
    • /
    • 2002
  • Ternary sequences are digital codes consisting of discrete values -1, 0, and 1 only. They are advantageous in that the correlation can be carried out using additions only Also, they feature an ideal circular autocorrelation function, but in channel characterization tasks, the usual requirement is that the linear autocorrelation function be ideal, i.e., a Kronecker delta function. In this article, we consider two approaches to improving their linear autocorrelation or crosscorrelation properties: one is an inverse filtering method with theresholding and the other is a singular value decomposition (SVD) method. Both methods are simulated under noisy circumstances. The inverse filtering method resulted in an improvement in peak sidelobe level of about 1㏈ at an SNR of 30㏈, and the SVD method showed similar performances, albeit more sensitive to noise depending on the singular value selection strategy.

  • PDF

Shipboard Active Phased Array Antenna System for Satellite Communications (위성 통신용 선박 탑재 능동 위상배열 안테나 시스템)

  • 전순익;채종석;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1089-1097
    • /
    • 2002
  • In this paper, the novel shipboard Active Phased Array Antenna(APAA) system for maritime mobile satellite communications is introduced. The antenna uses novel technologies like wide range hybrid tracking, single antenna elements with both of Rx and Tx, asymmetrical array structure, interference isolation between Rx and Tx, and error correction method from frequency scan effect. The antenna has single aperture for both of Rx and Tx with 32 $\times$ 4 two-dimensional array. The antenna has two beams. Its frequencies are 7.25 ~ 7.75 GHz for Rx and 7.9 ~ 8.4 GHz for Tx. The antenna gains are 35.4 dBi for Rx and 35.7 dBi for Tx, those are 54 % of efficiency. The electrically steering ranges are $\pm$35$^{\circ}$ of elevation direction and $\pm$4$^{\circ}$ of azimuth direction. The mechanical control ranges at hybrid tracking capability are continuous 360$^{\circ}$ of azimuth direction and $\pm$10$^{\circ}$ of elevation direction. The antenna has 2.2$^{\circ}$ of 3 dB beamwidth, -14 dB of sidelobe level, and 21 dB of cross-pol suppression. The antenna performance was measured by near field measurement set. Its system performance was tested on the ship motion simulator and with the satellite transponder simulator. The test result showed that its tracking error was within -3 dB from its peak gain under motion condition. The antenna system was tested by real modulated Direct Broadcasting Satellite(DBS) signals to check its communication processing function.