• 제목/요약/키워드: Pattern vector extraction

검색결과 72건 처리시간 0.026초

효율적 특징벡터 추출기법와 신경회로망을 이용한 전력외란 자동 식별 (Automatic Classification of Power Quality Disturbances Using Efficient Feature Vector Extraction and Neural Networks)

  • 반지훈;김현수;남상원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1030-1032
    • /
    • 1998
  • In this paper, an efficient feature vector extraction method and MLP neural network are utilized to automatically detect and classify power quality disturbances, where the proposed classification procedure consists of the following three parts: i.e., (i) PQ disturbance detection using discrete wavelet transform. (ii) feature vector extraction from the detected disturbance. using several methods, such as FFT, DWT, Fisher's criterion. etc.. and (iii) classification of the corresponding type of each PQ disturbance by recognizing the pattern of the extracted feature vector. To demonstrate the performance and, applicability of the proposed classification algorithm. some test results obtained by analyzing 10-class PQ disturbances are also provided.

  • PDF

명암도 변화값과 기하학적 패턴벡터를 이용한 차량번호판 인식 (A Vehicle License Plate Recognition Using Intensity Variation and Geometric Pattern Vector)

  • 이응주;석영수
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.369-374
    • /
    • 2002
  • 본 논문에서는 명암도 변화값과 기하학적 패턴벡터를 이용하여 실시간으로 차량번호판을 추출하고 인식하는 알고리즘을 제안하였다. 일반적으로 차량영상에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 번호판 이외의 다른 영역보다 밀집도가 높은 특성이 있다. 따라서 본 논문에서는 이러한 성질을 이용하여 먼저 명암도 변화값을 사용하여 번호판을 추출하도록 하였으며 영상 입력과정에서 외부 환경에 따라 차량영상이 어둡거나 밝게 입력될 경우에도 동일한 추출 성능을 얻기 위하여 밝기 보정 과정을 수행하였다. 또한 추출된 번호판 영역으로부터 입력 문자의 크기, 이동 및 회전에 무관한 특성 추출을 위해 번호판 영역에서 잡음 제거와 세선화를 적용하여 전처리후 제안한 기하학적 패턴벡터를 이용하여 차량번호를 인식하도록 하였다. 제안한 방법들을 적용한 결과 기존의 원형 패턴벡터 보다 계산 속도가 빠르며, 차량번호판의 크기와 잡음에 무관하며, 불규칙한 조명 상태에서도 정확한 차량 번호를 인식할 수 있었다.

fMRI를 이용한 맛의 입력패턴벡터 추출 및 패턴인식 (Input Pattern Vector Extraction and Pattern Recognition of Taste using fMRI)

  • 이선엽;이용구;김기동
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제30권4호
    • /
    • pp.419-426
    • /
    • 2007
  • 본 논문에서는 맛 인식을 위한 입력패턴벡터를 추출하고 패턴인식을 위한 맛(쓴맛, 단맛, 신맛, 짠맛)학습 알고리즘을 설계하였다. 입력패턴벡터의 구성을 위해 맛 활성화 신호의 세기가 사용되었고, 맛 패턴인식을 위한 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하였고, 종속 부류층의 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하였다. 제안된 알고리즘의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였다. 패턴벡터는 종속 부류층의 뉴런에 의해 종속 클래스로 분류하고, 종속 클래스 층과 출력 층 사이의 연결강도는 분류된 종속 부류를 클래스로 지정하는 학습을 하게 하였다. 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식보다 우수한 분류성공률을 확인하였다.

  • PDF

3D 벡터 데이터를 이용한 효과적인 내부문양 표현 (Effective Internal Pattern Expression Using 3D Vector Data)

  • 박성준;조진수;황보택근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.645-646
    • /
    • 2008
  • Silhouette extraction is widely used in many computer graphics applications. In this paper, we proposed a method for extracting 3D silhouette and internal pattern from 3D vector data. To do this, we first make an edge-list, secondly define the silhouette, and finally remove hidden lines. After getting the silhouette, we extract internal pattern using adjacent edge's dihedral. The proposed method not only effectively improves the performance of extracting 3D silhouette and internal pattern from 3D vector data but also reduces the computational complexity.

  • PDF

Bi-Directional Kohonen Network와 인공신경망을 사용한 관리도 패턴 인식 (Recognition of Control Chart Pattern using Bi-Directional Kohonen Network and Artificial Neural Network)

  • 윤재준;박정술;김준석;백준걸
    • 한국시뮬레이션학회논문지
    • /
    • 제20권4호
    • /
    • pp.115-125
    • /
    • 2011
  • 제품의 품질 수준 제고를 위해 통계적 공정 관리(SPC : Statistical Process Control)의 다양한 관리도가 기업의 생산 공정을 관리하는데 사용된다. 관리도에 기록되는 공정 데이터는 특정 요인(Assignable Cause)에 의한 이상이 발생했을 때 그 요인에 따라 서로 다른 패턴(Pattern)으로 변화한다. 이러한 패턴을 구별하는 관리도 패턴(CCP : Control Chart Pattern) 인식(Recognition)은 공정에 대한 관리자의 빠른 의사 결정을 위해 매우 중요하다. 앞 선 연구들은 수집되는 원 데이터를 가공 하지않고 그대로 사용하였기 때문에 인식기(Recognizer)의 성능과 학습 속도가 저하되는 문제점이 있었다. 따라서 최근 데이터의 차원 축소와 인식기의 성능 향상을 위해 특질 추출법(Feature Extraction)을 적용한 특질 기반 인식기(Feature based Recognizer)에 대한 연구가 활발히 진행 중이다. 본 논문은 BDK(Bi-Directional Kohonen Network)를 사용하여 CCP의 참조 벡터(Reference Vector)를 생성하고 참조 벡터와 CCP 데이터의 거리를 기반으로 하는 특질을 추출하였다. 추출된 특질을 인공 신경망 기반 인식기의 입력 벡터로 사용하여 학습하였으며 원 데이터를 사용하여 학습하는 인공신경망 인식기와 예측 정확도 비교를 통해 제안 알고리즘의 성능을 평가하였다.

뇌파의 입력패턴벡터 추출 및 패턴인식 (Input Pattern Vector Extraction and Pattern Recognition of EEG)

  • 이용구;이선엽;최우승
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권5호
    • /
    • pp.95-103
    • /
    • 2006
  • 본 논문에서는 뇌파인식을 위한 입력패턴벡터를 추출하고 패턴인식을 위한 뇌파 학습 알고리즘을 설계하였다. 입력패턴벡터의 구성을 위해 알파리듬과 베타리듬의 주파수와 진폭이 사용되었고, 뇌파패턴인식을 위한 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하고, 종속 부류층의 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하였다. 제안된 알고리즘의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였고, 패턴벡터를 종속 부류층의 뉴런에 의해 종속 클래스로 분류하고, 종속 클래스 층과 출력 층 사이의 연결강도는 분류된 종속 부류를 클래스로 지정하는 학습을 하게 된다. 뇌파 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식보다 우수한 분류성공률을 확인하였다.

  • PDF

Feature Extraction Based on GRFs for Facial Expression Recognition

  • Yoon, Myoong-Young
    • 한국산업정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.23-31
    • /
    • 2002
  • 본 논문에서는 화상자료의 특성인 이웃 화소간의 종속성을 표현하는데 적합한 깁스분포를 바탕으로 얼굴 표정을 인식을 위한 특징벡터를 추출하는 새로운 방법을 제안하였다. 추출된 특징벡터는 얼굴 이미지의 크기, 위치, 회전에 대하여 불변한 특성을 갖는다. 얼굴 표정을 인식하기 위한 알고리즘은 특징벡터 추출하는 과정과 패턴을 인식하는 두 과정으로 나뉘어진다. 특징벡터는 얼굴 화상에 대하여 추정된 깁스분포를 바탕으로 수정된 2-D 조건부 모멘트로 구성된다. 얼굴 표정인식 과정에서는 패턴인식에 널리 사용되는 이산형 HMM를 사용한다. 제안된 방법에 대한 성능평가를 위하여 4가지의 얼굴 표정 인식 실험을 Workstation에서 실험한 결과, 제안된 얼굴 표정 인식 방법이 95% 이상의 성능을 보여주었다.

  • PDF

실시간 얼굴인식을 위한 빠른 Gabor 특징 추출 (Fast Gabor Feature Extraction for Real Time Face Recognition)

  • 조경식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.597-600
    • /
    • 2007
  • 얼굴은 개인의 신원확인을 위하여 중요한 생체부분이다. 하지만 얼굴인식은 고차원적인 패턴인식의 문제이다. 저해상도 얼굴영상 조차도 대단히 큰 특징공간을 생성한다. 고유공간기반 얼굴인식은 고차원적인 패턴인식의 문제를 보다 낮은 차원으로 줄여서 얼굴인식을 하는 방법이다. 본 연구의 목적은 실시간 얼굴인식을 위하여 빠른 특징 추출방법을 제공하는 것이다. 먼저, 입력된 얼굴 영상에서 주성분분석을 수행하여 고유벡터와 고유값을 생성하고, 생성된 고유벡터의 특이점에 Gabor 필터를 적용하여 특징벡터를 구성한 후에 앞에서 구해진 고유값을 곱하여 특징을 추출하는 방법을 제안한다. 본 연구에서는 ORL 데이터베이스를 이용하여 실험하였다.

  • PDF

강건한 한국어 상품평의 감정 분류를 위한 패턴 기반 자질 추출 방법 (A Robust Pattern-based Feature Extraction Method for Sentiment Categorization of Korean Customer Reviews)

  • 신준수;김학수
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권12호
    • /
    • pp.946-950
    • /
    • 2010
  • 기계 학습 기반의 많은 감정 분류 시스템들은 문장으로부터 언어적 자질을 추출하기 위하여 형태소 분석기를 사용한다. 그러나 온라인 상품평에는 많은 띄어쓰기 오류 및 철자 오류가 포함되어 있어서 일반적으로 형태소 분석기가 좋은 성능을 내기 어려우며, 기반 시스템의 낮은 성능은 감정 분류 시스템의 성능하락을 초래한다. 이러한 문제를 해결하기 위하여 본 논문에서는 어절 패턴과 음운 패턴의 최장 일치 매칭(matching)에 기반한 자질 추출 방법을 제안한다. 두 종류의 패턴은 대용량의 품사 부착 말뭉치로부터 자동으로 구축된다. 어절 패턴은 영사, 동사와 같은 내용어를 포함하는 어절들로 구성되며, 음운 패턴은 동사나 형용사와 같은 용언의 초성과 중성의 쌍으로 구성된다. 음운 패턴에 초성과 중성만을 사용한 이유는 철자 오류에 영향을 덜 받기 때문이다. 제안 방법을 평가하기 위하여 SVM(Support Vector Machine)을 기계 학습기로 사용하는 감정 분류 시스템을 구현하였다. 한국어 상품평에 대한 실험에서 제안 방법을 자질 추출 모듈로 사용하는 감정 분류 시스템이 형태소 분석기를 사용하는 것보다 우수한 성능을 보였다.

Hybrid Neural Networks for Pattern Recognition

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • 제9권6호
    • /
    • pp.637-640
    • /
    • 2011
  • The hybrid neural networks have characteristics such as fast learning times, generality, and simplicity, and are mainly used to classify learning data and to model non-linear systems. The middle layer of a hybrid neural network clusters the learning vectors by grouping homogenous vectors in the same cluster. In the clustering procedure, the homogeneity between learning vectors is represented as the distance between the vectors. Therefore, if the distances between a learning vector and all vectors in a cluster are smaller than a given constant radius, the learning vector is added to the cluster. However, the usage of a constant radius in clustering is the primary source of errors and therefore decreases the recognition success rate. To improve the recognition success rate, we proposed the enhanced hybrid network that organizes the middle layer effectively by using the enhanced ART1 network adjusting the vigilance parameter dynamically according to the similarity between patterns. The results of experiments on a large number of calling card images showed that the proposed algorithm greatly improves the character extraction and recognition compared with conventional recognition algorithms.