In this paper, an efficient feature vector extraction method and MLP neural network are utilized to automatically detect and classify power quality disturbances, where the proposed classification procedure consists of the following three parts: i.e., (i) PQ disturbance detection using discrete wavelet transform. (ii) feature vector extraction from the detected disturbance. using several methods, such as FFT, DWT, Fisher's criterion. etc.. and (iii) classification of the corresponding type of each PQ disturbance by recognizing the pattern of the extracted feature vector. To demonstrate the performance and, applicability of the proposed classification algorithm. some test results obtained by analyzing 10-class PQ disturbances are also provided.
본 논문에서는 명암도 변화값과 기하학적 패턴벡터를 이용하여 실시간으로 차량번호판을 추출하고 인식하는 알고리즘을 제안하였다. 일반적으로 차량영상에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 번호판 이외의 다른 영역보다 밀집도가 높은 특성이 있다. 따라서 본 논문에서는 이러한 성질을 이용하여 먼저 명암도 변화값을 사용하여 번호판을 추출하도록 하였으며 영상 입력과정에서 외부 환경에 따라 차량영상이 어둡거나 밝게 입력될 경우에도 동일한 추출 성능을 얻기 위하여 밝기 보정 과정을 수행하였다. 또한 추출된 번호판 영역으로부터 입력 문자의 크기, 이동 및 회전에 무관한 특성 추출을 위해 번호판 영역에서 잡음 제거와 세선화를 적용하여 전처리후 제안한 기하학적 패턴벡터를 이용하여 차량번호를 인식하도록 하였다. 제안한 방법들을 적용한 결과 기존의 원형 패턴벡터 보다 계산 속도가 빠르며, 차량번호판의 크기와 잡음에 무관하며, 불규칙한 조명 상태에서도 정확한 차량 번호를 인식할 수 있었다.
본 논문에서는 맛 인식을 위한 입력패턴벡터를 추출하고 패턴인식을 위한 맛(쓴맛, 단맛, 신맛, 짠맛)학습 알고리즘을 설계하였다. 입력패턴벡터의 구성을 위해 맛 활성화 신호의 세기가 사용되었고, 맛 패턴인식을 위한 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하였고, 종속 부류층의 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하였다. 제안된 알고리즘의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였다. 패턴벡터는 종속 부류층의 뉴런에 의해 종속 클래스로 분류하고, 종속 클래스 층과 출력 층 사이의 연결강도는 분류된 종속 부류를 클래스로 지정하는 학습을 하게 하였다. 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식보다 우수한 분류성공률을 확인하였다.
Silhouette extraction is widely used in many computer graphics applications. In this paper, we proposed a method for extracting 3D silhouette and internal pattern from 3D vector data. To do this, we first make an edge-list, secondly define the silhouette, and finally remove hidden lines. After getting the silhouette, we extract internal pattern using adjacent edge's dihedral. The proposed method not only effectively improves the performance of extracting 3D silhouette and internal pattern from 3D vector data but also reduces the computational complexity.
제품의 품질 수준 제고를 위해 통계적 공정 관리(SPC : Statistical Process Control)의 다양한 관리도가 기업의 생산 공정을 관리하는데 사용된다. 관리도에 기록되는 공정 데이터는 특정 요인(Assignable Cause)에 의한 이상이 발생했을 때 그 요인에 따라 서로 다른 패턴(Pattern)으로 변화한다. 이러한 패턴을 구별하는 관리도 패턴(CCP : Control Chart Pattern) 인식(Recognition)은 공정에 대한 관리자의 빠른 의사 결정을 위해 매우 중요하다. 앞 선 연구들은 수집되는 원 데이터를 가공 하지않고 그대로 사용하였기 때문에 인식기(Recognizer)의 성능과 학습 속도가 저하되는 문제점이 있었다. 따라서 최근 데이터의 차원 축소와 인식기의 성능 향상을 위해 특질 추출법(Feature Extraction)을 적용한 특질 기반 인식기(Feature based Recognizer)에 대한 연구가 활발히 진행 중이다. 본 논문은 BDK(Bi-Directional Kohonen Network)를 사용하여 CCP의 참조 벡터(Reference Vector)를 생성하고 참조 벡터와 CCP 데이터의 거리를 기반으로 하는 특질을 추출하였다. 추출된 특질을 인공 신경망 기반 인식기의 입력 벡터로 사용하여 학습하였으며 원 데이터를 사용하여 학습하는 인공신경망 인식기와 예측 정확도 비교를 통해 제안 알고리즘의 성능을 평가하였다.
본 논문에서는 뇌파인식을 위한 입력패턴벡터를 추출하고 패턴인식을 위한 뇌파 학습 알고리즘을 설계하였다. 입력패턴벡터의 구성을 위해 알파리듬과 베타리듬의 주파수와 진폭이 사용되었고, 뇌파패턴인식을 위한 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하고, 종속 부류층의 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하였다. 제안된 알고리즘의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였고, 패턴벡터를 종속 부류층의 뉴런에 의해 종속 클래스로 분류하고, 종속 클래스 층과 출력 층 사이의 연결강도는 분류된 종속 부류를 클래스로 지정하는 학습을 하게 된다. 뇌파 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식보다 우수한 분류성공률을 확인하였다.
본 논문에서는 화상자료의 특성인 이웃 화소간의 종속성을 표현하는데 적합한 깁스분포를 바탕으로 얼굴 표정을 인식을 위한 특징벡터를 추출하는 새로운 방법을 제안하였다. 추출된 특징벡터는 얼굴 이미지의 크기, 위치, 회전에 대하여 불변한 특성을 갖는다. 얼굴 표정을 인식하기 위한 알고리즘은 특징벡터 추출하는 과정과 패턴을 인식하는 두 과정으로 나뉘어진다. 특징벡터는 얼굴 화상에 대하여 추정된 깁스분포를 바탕으로 수정된 2-D 조건부 모멘트로 구성된다. 얼굴 표정인식 과정에서는 패턴인식에 널리 사용되는 이산형 HMM를 사용한다. 제안된 방법에 대한 성능평가를 위하여 4가지의 얼굴 표정 인식 실험을 Workstation에서 실험한 결과, 제안된 얼굴 표정 인식 방법이 95% 이상의 성능을 보여주었다.
얼굴은 개인의 신원확인을 위하여 중요한 생체부분이다. 하지만 얼굴인식은 고차원적인 패턴인식의 문제이다. 저해상도 얼굴영상 조차도 대단히 큰 특징공간을 생성한다. 고유공간기반 얼굴인식은 고차원적인 패턴인식의 문제를 보다 낮은 차원으로 줄여서 얼굴인식을 하는 방법이다. 본 연구의 목적은 실시간 얼굴인식을 위하여 빠른 특징 추출방법을 제공하는 것이다. 먼저, 입력된 얼굴 영상에서 주성분분석을 수행하여 고유벡터와 고유값을 생성하고, 생성된 고유벡터의 특이점에 Gabor 필터를 적용하여 특징벡터를 구성한 후에 앞에서 구해진 고유값을 곱하여 특징을 추출하는 방법을 제안한다. 본 연구에서는 ORL 데이터베이스를 이용하여 실험하였다.
기계 학습 기반의 많은 감정 분류 시스템들은 문장으로부터 언어적 자질을 추출하기 위하여 형태소 분석기를 사용한다. 그러나 온라인 상품평에는 많은 띄어쓰기 오류 및 철자 오류가 포함되어 있어서 일반적으로 형태소 분석기가 좋은 성능을 내기 어려우며, 기반 시스템의 낮은 성능은 감정 분류 시스템의 성능하락을 초래한다. 이러한 문제를 해결하기 위하여 본 논문에서는 어절 패턴과 음운 패턴의 최장 일치 매칭(matching)에 기반한 자질 추출 방법을 제안한다. 두 종류의 패턴은 대용량의 품사 부착 말뭉치로부터 자동으로 구축된다. 어절 패턴은 영사, 동사와 같은 내용어를 포함하는 어절들로 구성되며, 음운 패턴은 동사나 형용사와 같은 용언의 초성과 중성의 쌍으로 구성된다. 음운 패턴에 초성과 중성만을 사용한 이유는 철자 오류에 영향을 덜 받기 때문이다. 제안 방법을 평가하기 위하여 SVM(Support Vector Machine)을 기계 학습기로 사용하는 감정 분류 시스템을 구현하였다. 한국어 상품평에 대한 실험에서 제안 방법을 자질 추출 모듈로 사용하는 감정 분류 시스템이 형태소 분석기를 사용하는 것보다 우수한 성능을 보였다.
Journal of information and communication convergence engineering
/
제9권6호
/
pp.637-640
/
2011
The hybrid neural networks have characteristics such as fast learning times, generality, and simplicity, and are mainly used to classify learning data and to model non-linear systems. The middle layer of a hybrid neural network clusters the learning vectors by grouping homogenous vectors in the same cluster. In the clustering procedure, the homogeneity between learning vectors is represented as the distance between the vectors. Therefore, if the distances between a learning vector and all vectors in a cluster are smaller than a given constant radius, the learning vector is added to the cluster. However, the usage of a constant radius in clustering is the primary source of errors and therefore decreases the recognition success rate. To improve the recognition success rate, we proposed the enhanced hybrid network that organizes the middle layer effectively by using the enhanced ART1 network adjusting the vigilance parameter dynamically according to the similarity between patterns. The results of experiments on a large number of calling card images showed that the proposed algorithm greatly improves the character extraction and recognition compared with conventional recognition algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.