• Title/Summary/Keyword: Pattern classifier

Search Result 382, Processing Time 0.044 seconds

Invariant Classification and Detection for Cloth Searching (의류 검색용 회전 및 스케일 불변 이미지 분류 및 검색 기술)

  • Hwang, Inseong;Cho, Beobkeun;Jeon, Seungwoo;Choe, Yunsik
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.396-404
    • /
    • 2014
  • The field of searching clothing, which is very difficult due to the nature of the informal sector, has been in an effort to reduce the recognition error and computational complexity. However, there is no concrete examples of the whole progress of learning and recognizing for cloth, and the related technologies are still showing many limitations. In this paper, the whole process including identifying both the person and cloth in an image and analyzing both its color and texture pattern is specifically shown for classification. Especially, deformable search descriptor, LBPROT_35 is proposed for identifying the pattern of clothing. The proposed method is scale and rotation invariant, so we can obtain even higher detection rate even though the scale and angle of the image changes. In addition, the color classifier with the color space quantization is proposed not to loose color similarity. In simulation, we build database by training a total of 810 images from the clothing images on the internet, and test some of them. As a result, the proposed method shows a good performance as it has 94.4% matching rate while the former Dense-SIFT method has 63.9%.

Context-Dependent Classification of Multi-Echo MRI Using Bayes Compound Decision Model (Bayes의 복합 의사결정모델을 이용한 다중에코 자기공명영상의 context-dependent 분류)

  • 전준철;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.179-187
    • /
    • 1999
  • Purpose : This paper introduces a computationally inexpensive context-dependent classification of multi-echo MRI with Bayes compound decision model. In order to produce accurate region segmentation especially in homogeneous area and along boundaries of the regions, we propose a classification method that uses contextual information of local enighborhood system in the image. Material and Methods : The performance of the context free classifier over a statistically heterogeneous image can be improved if the local stationary regions in the image are disassociated from each other through the mechanism of the interaction parameters defined at he local neighborhood level. In order to improve the classification accuracy, we use the contextual information which resolves ambiguities in the class assignment of a pattern based on the labels of the neighboring patterns in classifying the image. Since the data immediately surrounding a given pixel is intimately associated with this given pixel., then if the true nature of the surrounding pixel is known this can be used to extract the true nature of the given pixel. The proposed context-dependent compound decision model uses the compound Bayes decision rule with the contextual information. As for the contextual information in the model, the directional transition probabilities estimated from the local neighborhood system are used for the interaction parameters. Results : The context-dependent classification paradigm with compound Bayesian model for multi-echo MR images is developed. Compared to context free classification which does not consider contextual information, context-dependent classifier show improved classification results especially in homogeneous and along boundaries of regions since contextual information is used during the classification. Conclusion : We introduce a new paradigm to classify multi-echo MRI using clustering analysis and Bayesian compound decision model to improve the classification results.

  • PDF

A Machine Learning-Based Encryption Behavior Cognitive Technique for Ransomware Detection (랜섬웨어 탐지를 위한 머신러닝 기반 암호화 행위 감지 기법)

  • Yoon-Cheol Hwang
    • Journal of Industrial Convergence
    • /
    • v.21 no.12
    • /
    • pp.55-62
    • /
    • 2023
  • Recent ransomware attacks employ various techniques and pathways, posing significant challenges in early detection and defense. Consequently, the scale of damage is continually growing. This paper introduces a machine learning-based approach for effective ransomware detection by focusing on file encryption and encryption patterns, which are pivotal functionalities utilized by ransomware. Ransomware is identified by analyzing password behavior and encryption patterns, making it possible to detect specific ransomware variants and new types of ransomware, thereby mitigating ransomware attacks effectively. The proposed machine learning-based encryption behavior detection technique extracts encryption and encryption pattern characteristics and trains them using a machine learning classifier. The final outcome is an ensemble of results from two classifiers. The classifier plays a key role in determining the presence or absence of ransomware, leading to enhanced accuracy. The proposed technique is implemented using the numpy, pandas, and Python's Scikit-Learn library. Evaluation indicators reveal an average accuracy of 94%, precision of 95%, recall rate of 93%, and an F1 score of 95%. These performance results validate the feasibility of ransomware detection through encryption behavior analysis, and further research is encouraged to enhance the technique for proactive ransomware detection.

Filter-Bank Based Regularized Common Spatial Pattern for Classification of Motor Imagery EEG (동작 상상 EEG 분류를 위한 필터 뱅크 기반 정규화 공통 공간 패턴)

  • Park, Sang-Hoon;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.587-594
    • /
    • 2017
  • Recently, motor imagery electroencephalogram(EEG) based Brain-Computer Interface(BCI) systems have received a significant amount of attention in various fields, including medicine and engineering. The Common Spatial Pattern(CSP) algorithm is the most commonly-used method to extract the features from motor imagery EEG. However, the CSP algorithm has limited applicability in Small-Sample Setting(SSS) situations because these situations rely on a covariance matrix. In addition, large differences in performance depend on the frequency bands that are being used. To address these problems, 4-40Hz band EEG signals are divided using nine filter-banks and Regularized CSP(R-CSP) is applied to individual frequency bands. Then, the Mutual Information-Based Individual Feature(MIBIF) algorithm is applied to the features of R-CSP for selecting discriminative features. Thereafter, selected features are used as inputs of the classifier Least Square Support Vector Machine(LS-SVM). The proposed method yielded a classification accuracy of 87.5%, 100%, 63.78%, 82.14%, and 86.11% in five subjects("aa", "al", "av", "aw", and "ay", respectively) for BCI competition III dataset IVa by using 18 channels in the vicinity of the motor area of the cerebral cortex. The proposed method improved the mean classification accuracy by 16.21%, 10.77% and 3.32% compared to the CSP, R-CSP and FBCSP, respectively The proposed method shows a particularly excellent performance in the SSS situation.

Hand Gesture Recognition Regardless of Sensor Misplacement for Circular EMG Sensor Array System (원형 근전도 센서 어레이 시스템의 센서 틀어짐에 강인한 손 제스쳐 인식)

  • Joo, SeongSoo;Park, HoonKi;Kim, InYoung;Lee, JongShill
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.371-376
    • /
    • 2017
  • In this paper, we propose an algorithm that can recognize the pattern regardless of the sensor position when performing EMG pattern recognition using circular EMG system equipment. Fourteen features were extracted by using the data obtained by measuring the eight channel EMG signals of six motions for 1 second. In addition, 112 features extracted from 8 channels were analyzed to perform principal component analysis, and only the data with high influence was cut out to 8 input signals. All experiments were performed using k-NN classifier and data was verified using 5-fold cross validation. When learning data in machine learning, the results vary greatly depending on what data is learned. EMG Accuracy of 99.3% was confirmed when using the learning data used in the previous studies. However, even if the position of the sensor was changed by only 22.5 degrees, it was clearly dropped to 67.28% accuracy. The accuracy of the proposed method is 98% and the accuracy of the proposed method is about 98% even if the sensor position is changed. Using these results, it is expected that the convenience of the users using the circular EMG system can be greatly increased.

Behavior Pattern Modeling based Game Bot detection (행동 패턴 모델을 이용한 게임 봇 검출 방법)

  • Park, Sang-Hyun;Jung, Hye-Wuk;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.422-427
    • /
    • 2010
  • Korean Game industry, especially MMORPG(Massively Multiplayer Online Game) has been rapidly expanding in these days. But As game industry is growing, lots of online game security incidents have also been increasing and getting prevailing. One of the most critical security incidents is 'Game Bots', which are programs to play MMORPG instead of human players. If player let the game bots play for them, they can get a lot of benefic game elements (experience points, items, etc.) without any effort, and it is considered unfair to other players. Plenty of game companies try to prevent bots, but it does not work well. In this paper, we propose a behavior pattern model for detecting bots. We analyzed behaviors of human players as well as bots and identified six game features to build the model to differentiate game bots from human players. Based on these features, we made a Naive Bayesian classifier to reasoning the game bot or not. To evaluated our method, we used 10 game bot data and 6 human Player data. As a result, we classify Game bot and human player with 88% accuracy.

A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data (AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Yong-Hyuk;Lee, Yong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.

Robustness of Face Recognition to Variations of Illumination on Mobile Devices Based on SVM

  • Nam, Gi-Pyo;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.25-44
    • /
    • 2010
  • With the increasing popularity of mobile devices, it has become necessary to protect private information and content in these devices. Face recognition has been favored over conventional passwords or security keys, because it can be easily implemented using a built-in camera, while providing user convenience. However, because mobile devices can be used both indoors and outdoors, there can be many illumination changes, which can reduce the accuracy of face recognition. Therefore, we propose a new face recognition method on a mobile device robust to illumination variations. This research makes the following four original contributions. First, we compared the performance of face recognition with illumination variations on mobile devices for several illumination normalization procedures suitable for mobile devices with low processing power. These include the Retinex filter, histogram equalization and histogram stretching. Second, we compared the performance for global and local methods of face recognition such as PCA (Principal Component Analysis), LNMF (Local Non-negative Matrix Factorization) and LBP (Local Binary Pattern) using an integer-based kernel suitable for mobile devices having low processing power. Third, the characteristics of each method according to the illumination va iations are analyzed. Fourth, we use two matching scores for several methods of illumination normalization, Retinex and histogram stretching, which show the best and $2^{nd}$ best performances, respectively. These are used as the inputs of an SVM (Support Vector Machine) classifier, which can increase the accuracy of face recognition. Experimental results with two databases (data collected by a mobile device and the AR database) showed that the accuracy of face recognition achieved by the proposed method was superior to that of other methods.

Video Coding Method Using Visual Perception Model based on Motion Analysis (움직임 분석 기반의 시각인지 모델을 이용한 비디오 코딩 방법)

  • Oh, Hyung-Suk;Kim, Won-Ha
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.223-236
    • /
    • 2012
  • We develop a video processing method that allows the more advanced human perception oriented video coding. The proposed method necessarily reflects all influences by the rate-distortion based optimization and the human visual perception that is affected by the visual saliency, the limited space-time resolution and the regional moving history. For reflecting the human perceptual effects, we devise an online moving pattern classifier using the Hedge algorithm. Then, we embed the existing visual saliency into the proposed moving patterns so as to establish a human visual perception model. In order to realize the proposed human visual perception model, we extend the conventional foveation filtering method. Compared to the conventional foveation filter only smoothing less stimulus video signals, the developed foveation filter can locally smooth and enhance signals according to the human visual perception without causing any artifacts. Due to signal enhancement, the developed foveation filter more efficiently transfers the bandwidth saved at smoothed signals to the enhanced signals. Performance evaluation verifies that the proposed video processing method satisfies the overall video quality, while improving the perceptual quality by 12%~44%.

Vapor Detection of ssDNA Decorated Graphene Transistor (ssDNA를 이용한 그래핀 가스 센서)

  • Jung, Youngmo;Kim, Young Jun;Moon, Hi Gue;Kim, Soo Min;Shin, Beomju;Lee, Joo Song;Seo, Minah;Lee, Taikjin;Kim, Jae Hun;Jun, Seong Chan;Lee, Seok;Kim, Chulki
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.310-313
    • /
    • 2014
  • We report a way to improve the ability of graphene to operate as a gas sensor by applying single stranded deoxyribonucleic acid (DNA). The sensitivity and recovery of the DNA-graphene sensor depending on the different DNA sequences are analyzed. The different sensor responses to reactive chemical vapors are demonstrated in the time domain. Because of the chemical gating effect of the deposited DNA, the resulting devices show complete and rapid recovery to baseline unlike the bare graphene at room temperature. The application of the pattern recognition technique can increase the potential of DNA-graphene sensors as a chemical vapor classifier.