DOI QR코드

DOI QR Code

Vapor Detection of ssDNA Decorated Graphene Transistor

ssDNA를 이용한 그래핀 가스 센서

  • Jung, Youngmo (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Kim, Young Jun (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Moon, Hi Gue (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Kim, Soo Min (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Shin, Beomju (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Lee, Joo Song (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Seo, Minah (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Lee, Taikjin (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Kim, Jae Hun (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Jun, Seong Chan (School of Mechanical Engineering, Yonsei University) ;
  • Lee, Seok (Sensor System Research center, Korea Institute of Science and Technology) ;
  • Kim, Chulki (Sensor System Research center, Korea Institute of Science and Technology)
  • 정영모 (한국과학기술연구원 센서시스템연구센터) ;
  • 김영준 (한국과학기술연구원 센서시스템연구센터) ;
  • 문희규 (한국과학기술연구원 센서시스템연구센터) ;
  • 김수민 (한국과학기술연구원 센서시스템연구센터) ;
  • 신범주 (한국과학기술연구원 센서시스템연구센터) ;
  • 이주송 (한국과학기술연구원 센서시스템연구센터) ;
  • 서민아 (한국과학기술연구원 센서시스템연구센터) ;
  • 이택진 (한국과학기술연구원 센서시스템연구센터) ;
  • 김재헌 (한국과학기술연구원 센서시스템연구센터) ;
  • 전성찬 (연세대학교 기계공학부) ;
  • 이석 (한국과학기술연구원 센서시스템연구센터) ;
  • 김철기 (한국과학기술연구원 센서시스템연구센터)
  • Received : 2014.08.29
  • Accepted : 2014.09.16
  • Published : 2014.09.30

Abstract

We report a way to improve the ability of graphene to operate as a gas sensor by applying single stranded deoxyribonucleic acid (DNA). The sensitivity and recovery of the DNA-graphene sensor depending on the different DNA sequences are analyzed. The different sensor responses to reactive chemical vapors are demonstrated in the time domain. Because of the chemical gating effect of the deposited DNA, the resulting devices show complete and rapid recovery to baseline unlike the bare graphene at room temperature. The application of the pattern recognition technique can increase the potential of DNA-graphene sensors as a chemical vapor classifier.

Keywords

References

  1. J. Xia, F. Chen, J. Li and N. Tao, "Measurement of the quantum capacitance of graphene", Nat. Nanotechol., Vol. 4, pp. 505-509, 2009. https://doi.org/10.1038/nnano.2009.177
  2. W. S. Jung, D. H. Kim, M. G. Lee, S. H. Kim, J. H. Kim, and C. S. Han, "Ultraconformal contact Ttansfer of monolayer graphene on metal to various substrates", Adv. Mater, pp. 1-7, 2014.
  3. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nat. Mater., Vol. 6, pp. 652-655, 2007. https://doi.org/10.1038/nmat1967
  4. A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, "Highly selective gas sensor arrays based on thermally reduced graphene oxide", Nanoscale, Vol. 5, pp. 5426-5434, 2013. https://doi.org/10.1039/c3nr00747b
  5. W. Wua, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen, and S. S. Pei, "Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing", Sens. Actuator B-Chem., Vol. 150, pp. 296-300, 2010. https://doi.org/10.1016/j.snb.2010.06.070
  6. Y. Lu, B. R. Goldsmith, N. J. Kybert, and A. T. C. Johnson, "DNA-decorated graphene chemical sensors", Appl. Phys. Lett, Vol. 97, p. 083107, 2010. https://doi.org/10.1063/1.3483128
  7. T. Gan and S. Hu, "Electrochemical sensors based on graphene materials", Microchim Acta, Vol. 175, pp. 1-19, 2011. https://doi.org/10.1007/s00604-011-0639-7
  8. D. Galimberti, A. Milani, and C. Castiglioni, "Infrared intensities and charge mobility in hydrogen bonded complexes", J. Chem. Phys., Vol. 139, p. 074304, 2013. https://doi.org/10.1063/1.4818416