• Title/Summary/Keyword: Pattern classifier

Search Result 383, Processing Time 0.024 seconds

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.

Face detection using fuzzy color classifier and convex-hull (Fuzzy Color Classifier 와 Convex-hull을 사용한 얼굴 검출)

  • Park, Min-Sik;Park, Chang-U;Kim, Won-Ha;Park, Min-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.69-78
    • /
    • 2002
  • This paper addresses a method to automatically detect out a person's face from a given image that consists of a hair and face view of the person and a complex background scene. Out method involves an effective detection algorithm that exploits the spatial distribution characteristics of human skin color via an adaptive fuzzy color classifier (AFCC), The universal skin-color map is derived on the chrominance component of human skin color in Cb, Cr and their corresponding luminance. The desired fuzzy system is applied to decide the skin color regions and those that are not. We use RGB model for extracting the hair color regions because the hair regions often show low brightness and chromaticity estimation of low brightness color is not stable. After some preprocessing, we apply convex-hull to each region. Consequent face detection is made from the relationship between a face's convex-hull and a head's convex-hull. The algorithm using the convex-hull shows better performance than the algorithm using pattern method. The performance of the proposed algorithm is shown by experiment. Experimental results show that the proposed algorithm successfully and efficiently detects the faces without constrained input conditions in color images.

Pattern Classification Based on the Selective Perception Ability of Human Beings (인간 시각의 선택적 지각 능력에 기반한 패턴 분류)

  • Kim Do-Hyeon;Kim Kwang-Baek;Cho Jae-Hyun;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.398-405
    • /
    • 2006
  • We propose a pattern classification model using a selective perception ability of human beings. Generally, human beings recognize an object by putting a selective concentration on it in the region of interest. Much better classification and recognition could be possible by adapting this phenomenon in pattern classification. First, the pattern classification model creates some reference cluster patterns in a usual way. Then it generates an SPM(Selective Perception Map) that reflects the mutual relation of the reference cluster patterns. In the recognition phase, the model applies the SPM as a weight for calculating the distance between an input pattern and the reference patterns. Our experiments show that the proposed classifier with the SPM acquired the better results than other approaches in pattern classification.

Pose and Expression Invariant Alignment based Multi-View 3D Face Recognition

  • Ratyal, Naeem;Taj, Imtiaz;Bajwa, Usama;Sajid, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4903-4929
    • /
    • 2018
  • In this study, a fully automatic pose and expression invariant 3D face alignment algorithm is proposed to handle frontal and profile face images which is based on a two pass course to fine alignment strategy. The first pass of the algorithm coarsely aligns the face images to an intrinsic coordinate system (ICS) through a single 3D rotation and the second pass aligns them at fine level using a minimum nose tip-scanner distance (MNSD) approach. For facial recognition, multi-view faces are synthesized to exploit real 3D information and test the efficacy of the proposed system. Due to optimal separating hyper plane (OSH), Support Vector Machine (SVM) is employed in multi-view face verification (FV) task. In addition, a multi stage unified classifier based face identification (FI) algorithm is employed which combines results from seven base classifiers, two parallel face recognition algorithms and an exponential rank combiner, all in a hierarchical manner. The performance figures of the proposed methodology are corroborated by extensive experiments performed on four benchmark datasets: GavabDB, Bosphorus, UMB-DB and FRGC v2.0. Results show mark improvement in alignment accuracy and recognition rates. Moreover, a computational complexity analysis has been carried out for the proposed algorithm which reveals its superiority in terms of computational efficiency as well.

Hybrid Feature Selection Using Genetic Algorithm and Information Theory

  • Cho, Jae Hoon;Lee, Dae-Jong;Park, Jin-Il;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.73-82
    • /
    • 2013
  • In pattern classification, feature selection is an important factor in the performance of classifiers. In particular, when classifying a large number of features or variables, the accuracy and computational time of the classifier can be improved by using the relevant feature subset to remove the irrelevant, redundant, or noisy data. The proposed method consists of two parts: a wrapper part with an improved genetic algorithm(GA) using a new reproduction method and a filter part using mutual information. We also considered feature selection methods based on mutual information(MI) to improve computational complexity. Experimental results show that this method can achieve better performance in pattern recognition problems than other conventional solutions.

Construction of A Nonlinear Classification Algorithm Using Quadratic Functions (2차 하수를 이용한 비 선형 패턴인식 알고리즘 구축)

  • 김락상
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.4
    • /
    • pp.55-65
    • /
    • 2000
  • This paper presents a linear programming based algorithm for pattern classification. Pattern classification is being considered to be critical in the area of artificial intelligence and business applications. Previous methods employing linear programming have been aimed at two-group discrimination with one or more linear discriminant functions. Therefore, there are some limitations in applying available linear programming formulations directly to general multi-class classification problems. The algorithm proposed in this manuscript is based on quadratic or polynomial discriminant functions, which allow more flexibility in covering the class regions in the N-dimensional space. The proposed algorithm is compared with other competitive methods of pattern classification in experimental results and is shown to be competitive enough for a general purpose classifier.

  • PDF

Recognition of Patterns and Marks on Monitor Glass Panel

  • Ahn, In-Mo;Kang, Dong-Joong;Lee, Kee-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.99.2-99
    • /
    • 2002
  • Contents 1 In this paper a machine vision system for recognizing and classifying the patterns and marks engraved by die molding or laser marking on glass panel of computer monitor is suggested and evaluated experimentally. The vision system is equipped with a neural network based pattern classifier and searching process based on normalized grayscale correlation and adaptive binarization, which is applicable to the cases in which the segmentation of the pattern area from background using the ordinary blob coloring technique is quite difficult. Inspection process is accomplished via the way of NGC hypothesis and ANN verification. The proposed pattern recognition system is composed of three...

  • PDF

The Performance Comparison of Classifier Algorithm for Pattern Recognition of Welding Flaws (용접결함의 패턴인식을 위한 분류기 알고리즘의 성능 비교)

  • Yoon, Sung-Un;Kim, Chang-Hyun;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2006
  • In this study, we nodestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of welding flasw. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from welding flaws in time domain. Through this process, we confirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

Structural Damage Assessment Based on PNN -Application to Railway Bridge (확률신경망을 이용한 구조물 손상평가-철도교 적용)

  • 조효남;이성칠;오달수;최윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.321-329
    • /
    • 2002
  • Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems with the conventional neural network are the necessity of many training patterns for neural network teaming process and ambiguity in the relationship of neural network structure to the convergence of solution. In this paper, the PNN is used as a pattern classifier to detect the damages of the railway bridge using dynamic response. The comparison between the mode shape and the natural frequency of structure as training pattern is investigated for approriate selection of the training pattern in the damage detection of railway bridge using the PNN.

  • PDF

Text-to-Speech Synthesizer with the Process of Minimizing Concatenation Distortion (접합 왜곡의 최소화 과정이 포함된 음성합성기)

  • 박훈재;김상훈;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.38-44
    • /
    • 1998
  • 대용량의 음성합성용 데이터베이스를 용이하게 구축하기 위해 음성인식 시스템을 이용한 음소 경계 분할이 이루어지고 있다. 그러나 자동 분할 결과를 직접 이용하여 합성음 을 생성할 경우 음소 경계 에러로 인하여 접합 왜곡이 많이 발생하게 된다. 이러한 문제를 해결하기 위해서, 본 연구에서는 단위 접합시 경계 에러를 고려하여 적합한 접합 위치를 찾 고자 하였다. 여기서 적합한 접합 위치는 스펙트럼의 불연속이 최소화된 접합점을 의미한다. 합성음에 대한 MOS(Mean Opinion Score) 테스트와 스펙트로그램(spectrogram)의 모양을 비교하므로써 제안된 방법의 성능을 평가하였다. 제안된 방법은 두 단계로 이루어져 있다. 첫째, 레퍼런스 패턴(reference pattern)과 두 개의 테스트 패턴(test pattern)을 선택하는 단 계와, 둘째, 앞과 뒤 테스트 패턴 사이의 적합한 접합위치를 찾는 단계이다. 본 연구에서는 패턴 사이의 스펙트로그램 비교를 위해 켑스트럼(cepstrum) 피라미터와 패턴 분류기 (pattern classifier)인 DTW(Dynamic Time Warping) 알고리즘을 사용하였다. 제안된 알고 리즘을 평가한 청취 테스트의 결과에서 제안된 알고리즘을 적용하여 합성된 합성음의 음질 이 자동 분절로 생성된 단위를 그대로 이용한 경우의 음질보다 우수함을 보였다.

  • PDF