• Title/Summary/Keyword: Pattern Images

Search Result 1,526, Processing Time 0.025 seconds

Decoding Brain Patterns for Colored and Grayscale Images using Multivariate Pattern Analysis

  • Zafar, Raheel;Malik, Muhammad Noman;Hayat, Huma;Malik, Aamir Saeed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1543-1561
    • /
    • 2020
  • Taxonomy of human brain activity is a complicated rather challenging procedure. Due to its multifaceted aspects, including experiment design, stimuli selection and presentation of images other than feature extraction and selection techniques, foster its challenging nature. Although, researchers have focused various methods to create taxonomy of human brain activity, however use of multivariate pattern analysis (MVPA) for image recognition to catalog the human brain activities is scarce. Moreover, experiment design is a complex procedure and selection of image type, color and order is challenging too. Thus, this research bridge the gap by using MVPA to create taxonomy of human brain activity for different categories of images, both colored and gray scale. In this regard, experiment is conducted through EEG testing technique, with feature extraction, selection and classification approaches to collect data from prequalified criteria of 25 graduates of University Technology PETRONAS (UTP). These participants are shown both colored and gray scale images to record accuracy and reaction time. The results showed that colored images produces better end result in terms of accuracy and response time using wavelet transform, t-test and support vector machine. This research resulted that MVPA is a better approach for the analysis of EEG data as more useful information can be extracted from the brain using colored images. This research discusses a detail behavior of human brain based on the color and gray scale images for the specific and unique task. This research contributes to further improve the decoding of human brain with increased accuracy. Besides, such experiment settings can be implemented and contribute to other areas of medical, military, business, lie detection and many others.

A Pattern Recognition Based on Co-occurrence among Median Local Binary Patterns (중간값 국소이진패턴 사이의 동시발생 빈도 기반 패턴인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.316-320
    • /
    • 2016
  • In this paper, we presents a pattern recognition by considering the spatial co-occurrence among micro-patterns of texture images. The micro-patterns of texture image have been extracted by local binary pattern based on median(MLBP) of block image, and the recognition process is based on co-occurrence among MLBPs. The MLBP is applied not only to consider the local character but also analyze the pattern in order to be robust noise, and spatial co-occurrence is also applied to improve the recognition performance by considering the global space of image. The proposed method has been applied to recognized 17 RGB images of 120*120 pixels from Mayang texture image based on Euclidean distance. The experimental results show that the proposed method has a texture recognition performance.

Optical wavelet filter for Rotation and Scale-Invariant Pattern Recognition of images with Noise (잡음영상의 크기와 회전불변 패턴인식을 위한 광 웨이블릿 필터)

  • 이승희
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.2
    • /
    • pp.81-88
    • /
    • 2004
  • For scale and rotation invariant pattern recognition of images with noise, an optical wavelet CHF-fSDF filter is proposed. Wavelet CHF-fSDF filter is synthesized by each single CHF extracted from scale-changed and wavelet transformed images for a referene image as training images. The proposed optical wavelet CHF-fSDF filter is the type of the matched filter so that it can use the structure of 4f optical correlation system. The results of computer simulation show that the proposed filter has the rotation and scale-invariant correlation output and it is useful in the noisy input.

  • PDF

A Design of Clustering Classification Systems using Satellite Remote Sensing Images Based on Design Patterns (디자인 패턴을 적용한 위성영상처리를 위한 군집화 분류시스템의 설계)

  • Kim, Dong-Yeon;Kim, Jin-Il
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.319-326
    • /
    • 2002
  • In this paper, we have designed and implemented cluttering classification systems- unsupervised classifiers-for the processing of satellite remote sensing images. Implemented systems adopt various design patterns which include a factory pattern and a strategy pattern to support various satellite images'formats and to design compatible systems. The clustering systems consist of sequential clustering, K-Means clustering, ISODATA clustering and Fuzzy C-Means clustering classifiers. The systems are tested by using a Landsat TM satellite image for the classification input. As results, these clustering systems are well designed to extract sample data for the classification of satellite images of which there is no previous knowledge. The systems can be provided with real-time base clustering tools, compatibilities and components' reusabilities as well.

A Study on the Acquisition of Multi-Viewpoint Image for the Analysis of form and Space and its Effectiveness (형태 및 공간분석을 위한 다시점(多視點) 이미지 획득 및 유효성에 관한 연구)

  • Lee, Hyok-Jun;Lee, Jong-Suk
    • Korean Institute of Interior Design Journal
    • /
    • no.34
    • /
    • pp.149-156
    • /
    • 2002
  • This study intends to acquire objective models for basic quantitative analysis of pattern and space through image-recognition technique, and verify the effectiveness of such acquired models. Many experiments showed that the recognized result can be varied depending on the different viewpoints and the analysis based on the single-viewpoint images does not provide objectivity. The experiment using multi-viewpoint image models, which was attempted as an alternative for the disadvantages, showed the recognition similar to that of the actual model. Especially, images generated at laboratory using miniature model may be useful in comparing and understanding plural number of patterns. The models that have been acquired using such images may be hard to use in acquiring images for analyzing actual building patterns or indoor space, although they may be useful in pattern analysis using miniature model. The disadvantage, however, can be supplemented with panorama VR and C. G. simulation technique. Steady researches are required on the application of visual information to the image recognition principle and the model for quantitative analysis of pattern and space in addition to the research on the construction of the model that can be used in comparing and analyzing not only form and space but also miniature models.

Development of Data Fusion Human Identification System Based on Finger-Vein Pattern-Matching Method and photoplethysmography Identification

  • Ko, Kuk Won;Lee, Jiyeon;Moon, Hongsuk;Lee, Sangjoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.149-154
    • /
    • 2015
  • Biometric techniques for authentication using body parts such as a fingerprint, face, iris, voice, finger-vein and also photoplethysmography have become increasingly important in the personal security field, including door access control, finance security, electronic passport, and mobile device. Finger-vein images are now used to human identification, however, difficulties in recognizing finger-vein images are caused by capturing under various conditions, such as different temperatures and illumination, and noise in the acquisition camera. The human photoplethysmography is also important signal for human identification. In this paper To increase the recognition rate, we develop camera based identification method by combining finger vein image and photoplethysmography signal. We use a compact CMOS camera with a penetrating infrared LED light source to acquire images of finger vein and photoplethysmography signal. In addition, we suggest a simple pattern matching method to reduce the calculation time for embedded environments. The experimental results show that our simple system has good results in terms of speed and accuracy for personal identification compared to the result of only finger vein images.

Design and Implementation of Shopping Mall System based on Image (이미지 기반 쇼핑몰 시스템 설계 및 구현)

  • Ha, Yan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.173-177
    • /
    • 2012
  • This paper proposes a service which searches goods by images and finds a shopping mall site that offers referral services. In the service, images are obtained in various types. For example, paint function, images search based on pattern and shape. For this shopping mall system, it will be modeled using UML use case and class diagram. Also it will be implemented in JSP. It supports functions that searched various types of images by pattern and shape. In addition to features which were mentioned above, we aim to implement a shopping mall system to search and buy goods by improved information searching techniques, ultimately providing a space that realizes user's painting.

A Pattern Matching Algorithm Using Correlation in Fourier Domain (푸리에영역에서 상관을 이용한 패턴매칭 알고리듬)

  • Lee Choong Ho
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.9
    • /
    • pp.1255-1262
    • /
    • 2004
  • This paper proposes a pattern matching algorithm which is useful for pattern matching and verification of images which includes noises. This algorithm is based on the feature that the signal energy of image is concentrated in a small frequency region in Fourier domain. The proposed method extracts the small parts around origins and compares the regions. Specifically, the parts around origins are extracted and subtracted, and finally experimental threshold is adopted for pattern matching. In particular, the proposed algorithm is useful for the images which includes noises because the noises are distributed in the high frequency region generally, and the method extracts the low frequency region only. Experimental result shows the method recognize ten standard images and three images includes various noises. This method shows the performance which is equal to or better than that of Phase Only Correlation in some cases.

  • PDF

Image Set Optimization for Real-Time Video Photomosaics (실시간 비디오 포토 모자이크를 위한 이미지 집합 최적화)

  • Choi, Yoon-Seok;Koo, Bon-Ki
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.502-507
    • /
    • 2009
  • We present a real-time photomosaics method for small image set optimized by feature selection method. Photomosaics is an image that is divided into cells (usually rectangular grids), each of which is replaced with another image of appropriate color, shape and texture pattern. This method needs large set of tile images which have various types of image pattern. But large amount of photo images requires high cost for pattern searching and large space for saving the images. These requirements can cause problems in the application to a real-time domain or mobile devices with limited resources. Our approach is a genetic feature selection method for building an optimized image set to accelerate pattern searching speed and minimize the memory cost.

  • PDF

Multi-scale Local Difference Directional Number Pattern for Group-housed Pigs Recognition

  • Huang, Weijia;Zhu, Weixing;Zhang, Zhengyan;Guo, Yizheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3186-3203
    • /
    • 2021
  • In this paper, a multi-scale local difference directional number (MLDDN) pattern is proposed for pig identification. Firstly, the color images of individual pig are converted into grey images by the most significant bits (MSB) quantization, which makes the grey values have better discrimination. Then, Gabor amplitude and phase responses on different scales are obtained by convoluting the grey images with Gabor masks. Next, by calculating the main difference of local edge directions instead of traditionally edge information, the directional numbers of Gabor amplitude and phase responses are encoded. Finally, the block histograms of the encoded images are concatenated on each scale, and the maximum pooling is adopted on different scales to avoid the high feature dimension. Experimental results on two pigsties show that MLDDN impressively outperforms the other widely used local descriptors.