• Title/Summary/Keyword: Pathogenic Agents

Search Result 241, Processing Time 0.029 seconds

Changes in Causative Organisms and Antimicrobial Susceptibility of the Urinary Tract Infection (요로감염의 주요 원인균과 항생제 감수성의 변화에 관한 고찰)

  • Ha, Tae Uk;Hwang, Yong;Park, Seung Chol;Lee, Jea Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.85-93
    • /
    • 2017
  • The urinary tract infection (UTI) is one of the most important infections in hospital. The overuse and misuse of antimicrobial agents and the resulting emergence of resistant microorganisms have made choices regarding antimicrobial therapy more difficult. This study examined the changes in the antibiotic susceptibility to the causative organisms of urinary tract infections to provide useful information on the choice of adequate drugs in the treatment of urinary tract infections. The medical records of 2,707 patients with more than $10^5/ml$ microorganism in urine culture between January 2010 and December 2015 were reviewed retrospectively. The most common pathogenic organism was E. coli (28.1%). In the case of E.coli, there were no differences in frequency from 2010 to 2015 in men, but since 2014, the frequency decreased gradually since 2014 in women. For E. coli, the resistance rates to antibiotics were 72.2% in ampicillin, 44.9% in trimethoprim/sulfamethoxazole (TMP/SMX), and 41.3% in ciprofloxacin, but the 2nd, 3rd, and 4th cephalosporin (5%) had low antibiotic resistance rates. The pathogens of urinary tract infection are becoming diverse and their frequencies are also changing over time. These results suggest that the recommended drugs for UTI should be selected more carefully for in-patients and out-patients.

A Study on the Antimicrobial Effect of Glyceryl Caprylate in Cosmetics (Glyceryl Caprylate의 화장품에서의 항균력에 관한 연구)

  • Ahn, Gi-Woong;Choi, Min-Hee;Woo, Yun-Taek;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.1 s.60
    • /
    • pp.47-52
    • /
    • 2007
  • The antimicrobial properties of medium-chain ($C_{8-12}$) free fatty acids and their 1-monoglyceride derivatives against a wide range of microorganisms we well known. However, previous studies have been mainly focused on the antimicrobial activity against pathogenic bacteria and viruses causing diseases in human or domestic animals' infection. But, there have been few reports describing comprehensive surveys of antimicrobial effects against microorganisms in cosmetics. For a start of this study, we evaluated and compared the preservative activities of $C_8$ (glyceryl caprylate) and $C_{12}$(glyceryl laurate) 1-monoglyceride in cosmetic formulations. From the result, we found that both of them have very excellent preservative activity against bacteria, but less against fungi. And $C_8$ 1-monoglyceride was a little bit more effective than $C_{12}$ 1-monoglyceride. According to the test results to evaluate each antimicrobial activity of glyceryl caprylate towards 5 kinds of microorganisms used in preservation efficacy test in cosmetics, gram-positive bacteria S. aureus and yeast C. albicans were sensitive and mold A. niger was most tolerant to glyceryl caprylate. Therefore, we tried to improve the antimicrobial activity of glyceryl caprylate agianst mold such as A. niger so that we could make it used as a preservative for cosmetic products. As a result, we confirmed that the antimicrobial activity of glyceryl caprylate is much improved under acidic conditions in formulation. In addition, we found optimal combinations of glyceryl caprylate with other antimicrobial agents. Among tested 7 antimicrobial agent, methyparaben showed the highest preservative activity in combination with gglyceryl caprylate.

Antibacterial activity of Callophyllis japonica-methanol extracts against the pathogenic bacteria from swine (볏붉은잎 추출물의 돼지 유래 병원성 세균에 대한 항균효과)

  • Jeong, Jin-Woo;Jeong, Chan-Woo;Kim, Jeong-Tae;Yang, Won-Joon;Ahn, Mee-Jung;Kim, Byeoung-Hak;Kim, Joo-Ah;Shin, Tae-Kyun
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.4
    • /
    • pp.353-359
    • /
    • 2009
  • Interest in marine organisms as potential sources of bioactive agents has increased in recent years. The red seaweed, Callophyllis (C.) japonica, is abundant in the coastal regions of Jeju Island in South Korea. A previous study shows that C. japonica extracts have antioxidant activity and radioprotective effects. In this study, an methanol extract of C. japonica was tested whether it has antibacterial effects against the bacteria from swine. In vitro antibacterial activities of the crude extracts prepared from the C. japonica using 80 % methanol were tested for inhibitory activity against the Escherichia (E.) coli (S175), Enterococcus (E.) faecium (ATCC 51558), Salmonella (S.) Typhimurium and Staphylo-coccus (S.) aureus (ATCC 25923) by using broth dilution method. All organisms were incubated in brain heart infusion medium containing 1% extract at 0, 4, 8, 12 and 24 hrs. The 3 days-old piglets were fed an experimental diet supplemented with 1% C. japonica for 1 week. And the change of the coliform bacteria in feces were examined after supplement of C. japonica for 1 week. When the inocula containing $10^2{\sim}10^3$CFU/ml of each organism were used the extracts of C. japonica showed various degrees of antibacterial effects on all bacteria tested. The CFU value ($6.3\times10^8$CFU/ml) of C. japonica for E. coli was decreased 30% compared with vehicle controls ($9.0\times10^8$CFU/ml) after 8 hrs incubation. The proliferation rate of E. faecium was inhibited about 68% at 4 hrs, 81% at 8 hrs and 76% at 12 hrs after incubation, respectively. The proliferation rate of S. Typhimurium was inhibited about 96% at 4 hrs, 90% at 8 hrs and 72% at 12 hrs after incubation with extracts of C. japonica. The proliferation rate of S. aureus was inhibited more than 90% each time courses. Conclusively, a red seaweed extract of C. japonica was found to be effective against a number of gram negative and gram positive bacteria such as E. coli, E. faecium, S. Typhimurium, and S. aureus. The number of coliform bacteria was increased in the 1% C. japonica-treated group, as compared to those of controls. This result suggests that C. japonica extracts be added as an effective natural antibacterial agent. The precise mechanism of antibacterial effects and its application on swine industry remains to be further studied.

Change of Microflora in Livestock Manure during Composting Process (축산폐기물의 퇴비화 과정중 미생물상의 변동)

  • Whang, Kyun-Sook;Chang, Ki-Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.303-311
    • /
    • 1996
  • The microflora changes of 10 water-controled treatments combined with livestock manures(pig, chicken) and bulking agents(sawdust, paper sludge) were investigated. The B/F values of the P-1 and C-1(65%, $H_2O$) treatments were 3571 and 5400 respectively, but those of the P-4 and C-4(50%, $H_2O$) treatments showed very low values, 667 and 334, respectively. The B/F values tended to increase with higher water content of the treatments. In the composting processes, the successions of microflora, adapting the compost environments, took place via fluctuating temperature. In the high temperature period, the numbers of mesophilic bacteria and fungi decreased, but that of the spore forming bacteria increased. However, the number of mesophilic bacteria inereased during the cold period. The B/F values of compost ranged 25-300, which indicates a decrease in the quantity of bacteria. The time required for the temperature of compost to reach $60^{\circ}C$ showed different patterns. There was no pathogenic microorganism in the treatments which reached a high temperature in a short period of time, but, in the treatments which reached a high temperature over a Long period of time, the pathgenic microorganism was not still alive.

  • PDF

Effect of Double Replacement of L-Pro, D-Pro, D-Leu or Nleu in Hydrophobic Face of Amphipathic α-Helical Model Antimicrobial Peptide on Structure, Cell Selectivity and Mechanism of Action

  • Shin, Song Yub
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3267-3274
    • /
    • 2014
  • In order to investigate the effects of the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu (the peptoid residue for Leu) in the hydrophobic face (positions 9 and 13) of amphipathic ${\alpha}$-helical non-cell-selective antimicrobial peptide $L_8K_9W_1$ on the structure, cell selectivity and mechanism of action, we synthesized a series of $L_8K_9W_1$ analogs with double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu in the hydrophobic face of $L_8K_9W_1$. In this study, we have confirmed that the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, or Nleu in the hydrophobic face of $L_8K_9W_1$ let to a great increase in the selectivity toward bacterial cells and a complete destruction of ${\alpha}$-helical structure. Interestingly, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu preferentially interacted with negatively charged phospholipids, but unlike $L_8K_9W_1$ and $L_8K_9W_1$-$\small{D}$-Leu, they did not disrupt the integrity of lipid bilayers and depolarize the bacterial cytoplasmic membrane. These results suggested that the mode of action of $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu involves the intracellular target other than the bacterial membrane. In particular, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu had powerful antimicrobial activity (MIC range, 1 to $4{\mu}M$) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Taken together, our results suggested that $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu with great cell selectivity may be promising candidates for novel therapeutic agents, complementing conventional antibiotic therapies to combat pathogenic microorganisms.

Cloning and Expression of the Cyclooxygenase-2 gene in the Rock bream, Oplegnathusfasciatus (돌돔, Oplegnathus fasciatus의 Cyclooxygenase-2 유전자의 cloning 및 발현분석)

  • Jin, Ji Woong;Kim, Do Hyung;Kim, Young Chul;Jeong, Hyun Do
    • Journal of fish pathology
    • /
    • v.26 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • Megalocytivirus is a major fish pathogen in marine aquaculture of Asian countries including Korea. Despite of many species affected by this pathogen, little is known interaction between megalocytivirus and the fish immune system. One of the cyclooxygenase isoforms, named COX-2, is playing an important role in immune regulation, and distinct from COX-1 isoform of constitutive activity. COX-2 enzyme is induced by various inflammatory signals, including injection of lipopolysaccharide or infection by pathogenic agents. We cloned COX-2 gene in rock bream using degenerated primers designed from reported sequences of other fish species in PCR followed with 5'- and 3'-end RACE-PCR. The full length of cDNA of rbCOX2 (rock bream COX-2) gene are 2655 bp and that translates into 609 amino acids. The rbCOX-2 genomic organization are found to span 10 exons separated by 9 introns. We also studied if the experimental infection of rock bream with megalocytivirus could affect the expression of COX-2 gene. When injected with LPS, expression of the COX-2 gene was reached peak level at 1 day post injection and showed 13.10 fold increased level compared with that of control. While, when injected with megalocytivirus, we were not able to find significantly increased COX-2 gene expression different from that of control. Cloned and analyzed COX-2 gene in rock bream will help to understand defence mechanisms in fish after viral infection and will also support the development of the measures for treatment and prevention of viral infection.

Generation of antibodies against N-terminus fragment of AgI/II protein from Streptococcus mutans GS-5 (연쇄상구균(Streptococcus mutans GS-5)의 항원단백질 AgI/II의 N-terminus절편에 대한 항체형성)

  • Han, Ji-Hye;Baik, Byeong-Ju;Yang, Yeon-Mi;Park, Jeong-Yeol;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.401-410
    • /
    • 2006
  • Dental caries results from localized demineralization of tooth enamel by acids of bacterial origin produced from the fermentation of dietary sugars. A group of related oral bacteria, collectively known as mutans streptococci, are implicated as the primary etiological agents of human caries. Within this group, Streptococcus mutans has been known as a causative agent for dental caries. As well as acid production yielding the demineralization of tooth enamel, adherence and colonization of S. mutans to the teeth are also important for their virulence Cell-surface fibrillar proteins, which mediate adherence to the salivary pellicle are virulence components of mutans streptococci, and primary candidates for a human caries vaccine. Here we report that the AgI/II gene from S. mutans GS-5 were cloned by PCR amplification of the bacterial chromosomal DNA and the integrity of cloned genes were confirmed by nucleotide sequencing. Sequence analyses showed the sequence alignment of 280 nucleotides between the cloned AgI/II and the reported sequence of S. mutans GS-5 showed the perfect match The cloned genes which signal nucleotide was truncated, were transferred into bacterial expression vector and the recombinant proteins were purified as His-tag fusion proteins In order to generate polyclonal antibodies against the recombinant proteins, AgI/II mr, some $100{\mu}g$ of the proteins was injected into mice three times. It can be used for an effective vaccine production to prevent dental caries caused by pathogenic S. mutans.

  • PDF

Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans

  • Sheng, Miaomiao;Jia, Huake;Zhang, Gongyou;Zeng, Lina;Zhang, Tingting;Long, Yaohang;Lan, Jing;Hu, Zuquan;Zeng, Zhu;Wang, Bing;Liu, Hongmei
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.689-699
    • /
    • 2020
  • Brevibacillus brevis GZDF3 is a gram-positive, plant growth-promoting rhizosphere bacterium (PGPR) isolated from the rhizosphere soil of Pinellia ternata (an important herb in traditional Chinese medicine). The GZDF3 strain produces certain active compounds, such as siderophores, which are the final metabolite products of non-ribosomal peptide synthetase (NRPS) and independent non-ribosomal peptide synthetase (NIS) activity. With the present study, we attempted to investigate the siderophore production characteristics and conditions of Bacillus sp. GZDF3. The antibacterial activity of the siderophores on pathogenic fungi was also investigated. Optimal conditions for the synthesis of siderophores were determined by single factor method, using sucrose 15 g/l, asparagine 2 g/l, 32℃, and 48 h. The optimized sucrose asparagine medium significantly increased the production of siderophores, from 27.09% to 54.99%. Moreover, the effects of different kinds of metal ions on siderophore production were explored here. We found that Fe3+ and Cu2+ significantly inhibited the synthesis of siderophores. The preliminary separation and purification of siderophores by immobilized-metal affinity chromatography (IMAC) provides strong antibacterial activity against Candida albicans. The synergistic effect of siderophores and amphotericin B was also demonstrated. Our results have shown that the GZDF3 strain could produce a large amount of siderophores with strong antagonistic activity, which is helpful in the development of new biological control agents.

Disease Control Efficacy of the Extract of Magnolia officinalis against Perilla and Zoysiagrass Rusts (후박 추출물의 들깨 녹병과 잔디 녹병에 대한 방제 효과)

  • Yoon, Mi-Young;Choi, Yong Ho;Kang, Mun Seong;Lee, Jae Hong;Han, Seong Sook;Myoung, In Sik;Han, Byoung Soo;Choi, Gyung Ja;Jang, Kyoung Soo;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.45-48
    • /
    • 2013
  • Rusts are plant diseases caused by pathogenic fungi of the order Pucciniales. Rusts can affect a variety of plants. Development of new effective and environmentally benign agents against rusts is of great interest. In this study, we investigated the disease control efficacy of the emulsion concentrate (EC10) and wettable powder (WP20) type formulations of the extract of Magnolia officinalis (Magjia90; containing honokiol and magnolol at 90%) against rust diseases of perilla and zoysiagrass in fields. The treatment of EC10 and WP20 of Magjia90 showed control values of 47.9% to 69.6% and Magjia90-WP20 reduced more effectively the development of rust symptoms on perilla plants than Magjia90-EC10. Magjia90-WP20 also highly suppressed zoysiagrass rust with control values of 65.7% to 80.5%. On the other hand, no harmful effect of Magjia90-EC10 and Magjia90-WP20 was observed on the perilla and zoysiagrass plants tested. The results strongly indicate that the extract of M. officinalis (Magjia90) can be used as a natural fungicide for the control of rust diseases.

Inhibition of in Vitro Growth of Three Soil-borne Turfgrass Diseases by Antagonistic Bacteria from Composted Liquid Manure (가축분뇨액비의 길항미생물에 의한 토양전염성 병원균의 생육억제 효과)

  • Ryu, Ju Hyun;Shim, Gyu Yul;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.879-886
    • /
    • 2014
  • This study was conducted to test in vitro the antagonistic effect of composted liquid manure (CLM) against soil-borne turfgrass pathogenic fungi, Rhizoctonia solani AG-2-2 (IIIB) (brown patch), R. solani AG-2-2 (IV) (large patch), and Sclerotinia homoeocarpa (dollar spot) for environmentally friendly turfgrass management. CLMs were collected from 9 livestock excretion treatment facilities around the country including Gunwi (GW), Hapcheon (HC), Hoengseong (HS), Icheon (IC), Iksan (IS), Muan (MA), Nonsan (NS), and Yeoju (YJ). CLMs of IC, GW, and IS showed s ignificant (p < 0.05) mycelium growth inhibition that was 17.8%, 20.4%, and 48.0% against R. solani AG-2-2 (IIIB), R. solani AG-2-2 (IV), and S. homoeocarpa, respectively. A t otal of 110 bacterial isolates were obtained from the CLMs that showed antagonistic effects. Among them, 5, 4, and 10 microbe isolates showed promising antifungal activity against mycelium growth of R. solani AG-2-2 (IIIB), R. solani AG-2-2 (IV), and S. homoeocarpa, respectively. The bacterial isolates ICIIIB60, GWIV70, and ISSH20 effectively inhibited the mycelial growth of three soil-borne turfgrass pathogens. Selected bacterial isolates were identified as Alcaligenes sp., Bacillus licheniformis Ab2, and B. subtilis C7-3 through 16s rDNA gene sequence analysis. Among 5 fungicides, the most compatible fungicide with ICIIIB60, GWIV70, and ISSH20 was tebuconazol, toclofos-methyl and toclofos-methyl, respectively. These findings suggested that CLMs could be effectively used not only as organic liquid fertilizer sources but also as biological control agents for soil-borne turfgrass diseases such as brown patch, large patch, and dollar spot.