DOI QR코드

DOI QR Code

Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans

  • Sheng, Miaomiao (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Jia, Huake (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Zhang, Gongyou (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Zeng, Lina (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Zhang, Tingting (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Long, Yaohang (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Lan, Jing (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Hu, Zuquan (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Zeng, Zhu (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Wang, Bing (Engineering Research Center of Medical Biotechnology, Guizhou Medical University) ;
  • Liu, Hongmei (Engineering Research Center of Medical Biotechnology, Guizhou Medical University)
  • Received : 2019.10.29
  • Accepted : 2020.02.18
  • Published : 2020.05.28

Abstract

Brevibacillus brevis GZDF3 is a gram-positive, plant growth-promoting rhizosphere bacterium (PGPR) isolated from the rhizosphere soil of Pinellia ternata (an important herb in traditional Chinese medicine). The GZDF3 strain produces certain active compounds, such as siderophores, which are the final metabolite products of non-ribosomal peptide synthetase (NRPS) and independent non-ribosomal peptide synthetase (NIS) activity. With the present study, we attempted to investigate the siderophore production characteristics and conditions of Bacillus sp. GZDF3. The antibacterial activity of the siderophores on pathogenic fungi was also investigated. Optimal conditions for the synthesis of siderophores were determined by single factor method, using sucrose 15 g/l, asparagine 2 g/l, 32℃, and 48 h. The optimized sucrose asparagine medium significantly increased the production of siderophores, from 27.09% to 54.99%. Moreover, the effects of different kinds of metal ions on siderophore production were explored here. We found that Fe3+ and Cu2+ significantly inhibited the synthesis of siderophores. The preliminary separation and purification of siderophores by immobilized-metal affinity chromatography (IMAC) provides strong antibacterial activity against Candida albicans. The synergistic effect of siderophores and amphotericin B was also demonstrated. Our results have shown that the GZDF3 strain could produce a large amount of siderophores with strong antagonistic activity, which is helpful in the development of new biological control agents.

Keywords

References

  1. Gregory JA, David MF 2017. Current understanding of iron homeosisi. Am. J. Clin. Nutr. 106: 1559S-1566S. https://doi.org/10.3945/ajcn.117.155804
  2. Simon CA, Andrea KR, Franciso RQ. 2003. Bacterial Iron Homeostasisc. FEMS Microbiol. Rev. 27: 215-237. https://doi.org/10.1016/S0168-6445(03)00055-X
  3. Arora NK, Verma M. 2017. Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3Biotech 7: 381.
  4. Ringo S, Marlene KA, Katarzyna S, Oliver W, Drik T. 2018. Analysis of desferrioxamine-like siderophores and their capability to selectively bind metals and metalloids: development of a robust analytical RP-HPLC method. Res. Microbiol. 169: 598-607. https://doi.org/10.1016/j.resmic.2018.08.002
  5. Albelda BM, Monachon M, Joseph E. 2019. Siderophores: from natural rolesto potential applications. Adv. Appl. Microbiol. 106: 193-225. https://doi.org/10.1016/bs.aambs.2018.12.001
  6. De Serrano LO, Camper AK, Richards AM. 2016. An overview of siderophores for iron acquisition in microorganisms living in the extreme. Biometals 29: 551-571. https://doi.org/10.1007/s10534-016-9949-x
  7. Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. 2016. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol. Med. 22: 1077-1090. https://doi.org/10.1016/j.molmed.2016.10.005
  8. Levent hal GE, Ackermann M, Schiessl KT. 2019. Why microbes secrete molecules to modify their environment: the case of ironchelating siderophores. J. R. Soc. Interface 16: 1-13.
  9. Shi JL, Li YQ, Hu KM, Ren JG, Liu HM. 2015. Isolation and identification of pathogens from rotted root of Pinellia ternata in Guizhou province. Microbiol. China 42: 289-299.
  10. Ahmed E, Holmstrom SJM. 2014. Siderophores in environmental research: roles and applications. Microb. Biotechnol. 7: 196-208. https://doi.org/10.1111/1751-7915.12117
  11. Qi B, Han M. 2018. Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase. Cell 175: 571-582. https://doi.org/10.1016/j.cell.2018.07.032
  12. Sheng MM, Jia HK, Tao XM, Zeng LN, Zhang TT, Hu Z Q, et al. 2018. Mining, isolation and identification of siderophore synthesis gene from Brevibacillus brevis GZDF3. Am. J. Biochem. Biotechnol. 14: 200-209. https://doi.org/10.3844/ajbbsp.2018.200.209
  13. Bendale MS, Chaudhari BL, Chincholkar SB. 2009. Influence of environmental factors on siderophore production by Streptomyces fulvissimus ATCC 27431. Curr. Trends Biotechnol. Pharm. 3: 362-371.
  14. Santos S, Neto IF, Machado MD, Soares HMVM, Soares EV. 2014. Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions. Appl. Biochem. Biotechnol. 172: 549-560. https://doi.org/10.1007/s12010-013-0562-y
  15. Yu S, Teng C, Bai X, Liang JS, Song T, Dong LY, et al. 2017. Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of PB from soil. J. Microbiol. Biotechnol. 27: 1500-1512. https://doi.org/10.4014/jmb.1705.05021
  16. Sayyed RZ, Badgujar MD, Sonawane HM, Mhaske MM, Chincholkar SB. 2005. Production of microbial iron chelators (siderophores) by fluorescent pseudomonads. Ind. J. Biotechnol. 4: 484-490.
  17. Yu SM, Teng CY, Bai X, Liang JS, Song T, Dong LY, et al. 2017. Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum. J. Microbiol. 55: 877-884. https://doi.org/10.1007/s12275-017-7191-z
  18. Waldron KJ, Tottey S, Yanagisawa S, Dennison C, Robinson NJ. 2007. A periplasmic iron-binding protein contributes toward inward copper supply. J. Biol. Chem. 282: 3837-3846. https://doi.org/10.1074/jbc.M609916200
  19. Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E. 2009. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol. Biochem. 41: 154-162. https://doi.org/10.1016/j.soilbio.2008.10.010
  20. Khalid AH, Jin HJ. 2019. Zinc Ions Affect Siderophore Production by Fungi Isolated from the Panax ginseng Rhizosphere. J. Microbiol. Biotechnol. 29: 105-113. https://doi.org/10.4014/jmb.1712.12026
  21. Gaonkar T, Bhosle S. 2013. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 93: 1835-1843. https://doi.org/10.1016/j.chemosphere.2013.06.036
  22. Naik MM, Dubey SK. 2011. Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr. Microbiol. 62: 409-414. https://doi.org/10.1007/s00284-010-9722-2
  23. Nobile CJ, Johnson AD. 2015. Candida albicans biofilms and human disease. Annu. Rev. Microbiol. 69: 71-92. https://doi.org/10.1146/annurev-micro-091014-104330
  24. Lv QZ, Yan L, Jiang YY. 2016. The synthesis, regulation, and functions of sterols in Candida albicans: well-known but still lots to learn. Virulence 7: 649-659. https://doi.org/10.1080/21505594.2016.1188236
  25. Jakub S, Jakub M, Przemyslaw B, Anna K. 2019. A Crucial role for ergosterol in plasma membrane composition, localisation, and activity of Cdr1p and H+-ATPase in Candida albicans. Microorganisms 7: 378. https://doi.org/10.3390/microorganisms7100378
  26. Yasmin S, Alcazar FL, Grundlinger M, Puempel T, Cairns T, Blatzer M, 2012. Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus. Proc. Natl. Acad. Sci. USA 109: 497-504.
  27. Savage KA, Parquet MC, Allan DS, Davidson RJ, Holbein BE, Lilly EA,.2018. Iron restriction to clinical isolates of Candida albicans by the novel chelator DIBI inhibits growth and increases sensitivity to azoles in vitro and in vivo in a murine model of experimental vaginitis. Antimicrob. Agents Chemother. 62: e02576-17.
  28. Schwyn, B. and Neilands, JB. 1987. Universal chemical assay for the detection and determination of siderophore. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  29. Li YY, Jiang W, Gao RJ, Cai YJ, Guan ZB, Liao XR. 2018. Fe(III)-based immobilized metal-affinity chromatography (IMAC) method for the separation of the catechol siderophore from Bacillus tequilensis CD36. 3 Biotech. 8: 31-36. https://doi.org/10.1007/s13205-017-1051-8
  30. Ierusalimskii ND, Konova IV, Neronova NM. 1956. Determination of vitamins and antibiotics by diffusion in agar. I. Simplified computations for the cup method. Mikrobiologiia 28: 433-443.
  31. Diaz VM, Villa P, Frias A. 2002. Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Rev. Latinoam Microbiol. 44: 112-117.
  32. Scher Fran M, Baker Ralph. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. J. Phytopathol. 72: 1567-1573. https://doi.org/10.1094/Phyto-72-1567
  33. Manninen Merja, Mattila-Sandholm Tiina. 1994. Methods for the detection of Pseudomonas siderophores. J. Microbiol. Method 19: 223-234. https://doi.org/10.1016/0167-7012(94)90073-6
  34. Le VH, Olivera C, Spagnuolo J, Davies IG, Rakonjac J. 2020. In vitro synergy between sodium deoxycholate and furazolidone against enterobacteria. BMC Microbiol. 20(1): 5. https://doi.org/10.1186/s12866-019-1668-3
  35. Manwar AV, Khandelwal SR, Chaudhari BL, Meyer JM, Chincholkar SB . 2004. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Appl. Biochem. Biotechnol. 118: 243-251. https://doi.org/10.1385/ABAB:118:1-3:243
  36. Sayyed RZ, and Chincholkar SB. 2009. Siderophore producing Alcaligenes feacalis: more biocontrol potential visavis chemical fungicide. Curr. Microbiol. 58: 47-51. https://doi.org/10.1007/s00284-008-9264-z
  37. Sayyed RZ, Chincholkar SB. 2010. Growth and siderophores production in Alcaligenes faecalis is regulated by metal ions. Indian J. Microbiol. 50: 179-182. https://doi.org/10.1007/s12088-010-0021-1
  38. Shaikh SS, Wani SJ, Sayyed RZ. 2016. Statistical-based optimization and scale-up of siderophore production process on laboratory bioreactor. 3 Biotech. 6(1): 69. https://doi.org/10.1007/s13205-016-0365-2
  39. Duffy BK, Defago G. 2000. Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 66: 3142-3150. https://doi.org/10.1128/AEM.66.8.3142-3150.2000
  40. Bultreys A, Gheysen L. 2000. Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG2352. Appl. Environ. Microbiol. 66: 325-331. https://doi.org/10.1128/AEM.66.1.325-331.2000
  41. Johnstone TC, Nolan EM. 2015. Beyond iron: non-classical biological functions of bacterial Siderophores. Dalton Trans. 44: 6320-6339. https://doi.org/10.1039/C4DT03559C
  42. Wang Z, Schenkeveld WD, Kraemer SM, Giammar DE. 2015. Synergistic effect of reductive and ligand-promoted dissolution of goethite. Environ. Sci. Technol. 49: 7236-7244. https://doi.org/10.1021/acs.est.5b01191
  43. Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, et al. 2014. Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J. Basic Microbiol. 54: 588-597.
  44. Bing Li, Qing Li, Zhihui Xu, Nan Zhang, Qirong Shen, Ruifu Zhang. 2014. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol. 5: 636.
  45. Saha, M, Sarkar S, Sarkar B,Sharma BK, Bhattacharjee S, Tribedi P. 2016. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res. Int. 23: 3984-3999. https://doi.org/10.1007/s11356-015-4294-0
  46. Ye L, Hildebrand F, Dingemans J, Ballet S, Laus G, Matthijs S, et al. 2014. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. Pathogens. PLoS One 9: e110038. https://doi.org/10.1371/journal.pone.0110038
  47. Yang X, Yousef AE. 2018. Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J. Microbiol. Biotechnol. 34(4): 57. https://doi.org/10.1007/s11274-018-2437-4
  48. Che JM, Liu B, Chen Z, Shi H, Liu GD, Ge CB. 2015. Identification of ethylparaben as the antimicrobial substance produced by Brevibacillus brevis FJAT-0809-GLX. Microbiol. Res. 172: 48-56. https://doi.org/10.1016/j.micres.2014.11.007

Cited by

  1. Siderophore and indolic acid production by Paenibacillus triticisoli BJ-18 and their plant growth-promoting and antimicrobe abilities vol.8, 2020, https://doi.org/10.7717/peerj.9403
  2. 잠재적 미생물 농약으로서 다양한 식물성장 촉진 활성을 가진 siderophore 생산 세균의 분리와 특성 vol.29, pp.9, 2020, https://doi.org/10.5322/jesi.2020.29.9.925
  3. Identification and Antifungal Mechanism of a Novel Actinobacterium Streptomyces huiliensis sp. nov. Against Fusarium oxysporum f. sp. cubense Tropical Race 4 of Banana vol.12, 2020, https://doi.org/10.3389/fmicb.2021.722661
  4. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms vol.22, pp.19, 2020, https://doi.org/10.3390/ijms221910529
  5. Isolation and Molecular Characterization of Plant-Growth-Promoting Bacteria and Their Effect on Eggplant (Solanum melongena) Growth vol.11, pp.12, 2021, https://doi.org/10.3390/agriculture11121258