본 논문은 최단 경로 라우팅 문제의 해결을 위한 새로운 방식의 유전자 알고리즘(Genetic Algorithm)을 제안한다. 이를 위해 가변길이(variable-length) 염색체(chromosome) 구조와 그에 따른 유전자 부호화(genes coding) 기법을 설계하고, 부분 염색체(partial-chromosome)를 교환하는데 있어서 교차점(crossing-site)에 의존성이 없는 교배(crossover) 기법과 개체군(population)의 다양성(diversity)을 유지하는 돌연변이(mutation) 기법을 개발한다. 또한, 모든 부적합(infeasible) 염색체를 간단하게 치료할 수 있는 복구 함수(repair function)를 제안한다. 제안 교배 기법과 돌연변이 기법의 상호 동작은 제안 알고리즘이 개체군의 다양성을 유지하면서 해-표면(solution-surface)을 효과적으로 탐색할 수 있도록 하여 해의 최적성(optimality) 및 수렴(convergence) 속도의 향상을 도모한다. 제안 알고리즘에 의해 계산된 경로의 최적성은 유전자 알고리즘을 이용하는 기존의 알고리즘보다 우수하고, 수렴 속도도 빠르다는 것을 컴퓨터 시뮬레이션을 통해 확인한다. 이 결과는 대부분의 출발지와 도착지 쌍에 대해 기존의 유전자 알고리즘 기반의 최단 경로 라우팅 알고리즘에 비해 네트워크 토폴로지에 비교적 덜 민감한 것으로 나타난다.
본 논문은 HEVC의 엔트로피 코딩방법인 CABAC Encoder를 위한 효율적인 하드웨어 구조를 제안한다. CABAC의 이진 산술 부호화(Binary Arithmetic Encode)는 각 단계간의 의존도가 높아 빠른 연산이 어렵다. 제안하는 이진 산술 부호화기는 입력으로 들어오는 빈을 고속으로 처리하기 위하여 4단계의 파이프라인 구조로 설계 되었다. 입력 빈의 값에 따라 MPS(Most Probable Symbol) 혹은 LPS(Least Probable Symbol)로 결정되어 이진 산술 부호화를 수행 하며 반복되는 연산으로 발생하는 Critical path는 LUT를 사용하여 줄일 수 있었고 하드웨어 면적을 줄이기 위해 메모리를 사용하지 않는 구조로 설계 되었다. 제안하는 CABAC의 이진 산술 부호화기는 Verilog-HDL로 설계하였으며 65nm 공정으로 합성하였다. 합성 결과 게이트수는 3.17k 이며 최대 동작주파수는 1.53GHz이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권3호
/
pp.1477-1491
/
2017
Inspired by the multi-scale nature of hippocampal place cells, a biologically inspired model based on a multi-scale spatial representation for goal-directed navigation is proposed in order to achieve robotic spatial cognition and autonomous navigation. First, a map of the place cells is constructed in different scales, which is used for encoding the spatial environment. Then, the firing rate of the place cells in each layer is calculated by the Gaussian function as the input of the Q-learning process. The robot decides on its next direction for movement through several candidate actions according to the rules of action selection. After several training trials, the robot can accumulate experiential knowledge and thus learn an appropriate navigation policy to find its goal. The results in simulation show that, in contrast to the other two methods(G-Q, S-Q), the multi-scale model presented in this paper is not only in line with the multi-scale nature of place cells, but also has a faster learning potential to find the optimized path to the goal. Additionally, this method also has a good ability to complete the goal-directed navigation task in large space and in the environments with obstacles.
현재 DDoS 공격을 근본적으로 차단하여 시스템과 네트워크 자원을 보호하기 위하여 패킷마킹을 이용한 해킹경로 역추적기법들이 연구되고 있다. 기존의 확률적 패킷마킹 역추적 기법은 마킹필드로 IP 식별자필드에 마킹함으로 ICMP의 사용이 불가능하고 경로정보의 암호화와 마크의 크기를 줄이기 위한 hash 함수의 사용으로 암호화된 원래정보의 복원이 불가능하다. 또한 XOR 연산에 의한 결과값의 중복으로 인한 역추적의 문제점을 가지고 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 라우터 ID를 이용하여 패킷에 마킹하고 마킹된 정보를 추출하여 공격자의 근원지를 정확하고 효율적으로 역추적할 수 있는 알고리즘을 제안하고 구현하였다.
This paper proposes a common interleaving method associated with independent channel-encoding among transmitter antenna branches in orthogonal frequency and code division multiplexing based on multiple-input multiple-output (MIMO) multiplexing to achieve an extremely high throughput such as 1 Gbps using a 100 MHz bandwidth. This paper also investigates the average packet error rate performance as a function of the average received signal energy per bit-to-background noise power spectrum density ratio $(E_b/N_0)$. We found that the loss in the required average received $E_b/N_0$ of the proposed method is only within approximately 0.3 dB in up to a 12-path Rayleigh fading channel, using 16QAM and Turbo coding with a coding rate of 5/6. We also clarify that even for a large fading correlation among antenna branches, 1 Gbps is still possible by increasing the transmission power. Therefore, the proposed method reduces the processing rate to 1/4 in the turbo decoder with only a slight loss in the required average received $E_b/N_0$.
Genetic algorithm (GA), which has a powerful searching ability and is comparatively easy to use and also to apply, is in the spotlight in the field of the optimization for mechanical systems these days. However, it also contains some problems of slow convergence and low efficiency caused by a huge amount of repetitive computation. To improve the processing efficiency of repetitive computation, some papers have proposed paralleled GA these days. There are some cases that mention the use of gray code or suggest using gray code partially in GA to raise its slow convergence. Gray code is an encoding of numbers so that adjacent numbers have a single digit differing by 1. A binary gray code with n digits corresponds to a hamiltonian path on an n-dimensional hypercube (including direction reversals). The term gray code is open used to refer to a reflected code, or more specifically still, the binary reflected gray code. However, according to proposed reports, gray code GA has lower convergence about 10-20% comparing with binary code GA without presenting any results. This study proposes new Full gray code GA (FGGA) applying a gray code throughout all basic operation fields of GA, which has a good data processing ability to improve the slow convergence of binary code GA.
A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there have been studies on graph embedding, especially using deep learning techniques. However, until now, most deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph. Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each nodeweight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in measuring the similarity between weighted graphs.
이 논문에서는 모바일 기기상에서 카메라기반 악보인식을 위한 오선 두께와 오선 간격을 추정하는 전처리 기술을 제안한다. 캡쳐된 영상은 조명이나, 흐려짐, 저해상도 등의 많은 왜곡으로 인해 인식에 어려움이 있다. 특히 복잡한 배경을 가지고 있는 악보 영상인식의 경우 더욱 그렇다. 악보 기호 인식에서 오선 두께와 오선 간격은 인식에 큰 영향을 끼친다. 이들 정보는 이진화에도 사용되는데, 복잡한 배경을 가지고 있는 경우 일반적인 이진 영상은 오선 두께와 간격을 추정하는데 만족스럽지 못하다. 따라서 우리는 에지영상에서 런-길이 엔코딩 기술을 이용해 오선 두께와 간격 추정하는 강건한 알고리즘을 제안한다. 제안된 방법은 2단계로 구성되어 있다. 첫 번째 단계는 소벨 연산자에 의해 영역별로 에지 영상을 기반으로 오선 두께와 간격을 추정한다. 각 에지 영상의 열은 런-길이 엔코딩 알고리즘에 의해 기술된다. 두 번째 단계는 안정한 경로 알고리즘을 이용한 오선 검출과 오선 위치를 추적하는 적응적 LTH알고리즘을 이용한 오선 제거이다. 실험결과 복잡한 영상의 경우에도 강건함과 높은 인식률을 보였다.
본 논문에서는 원 영상을 푸리변환한 후 위상 변조 XOR 연산으로 암호함으로써 정보의 손실에 강하며 한 개의 광 경로만으로 간단히 복호화 할 수 있는 위상 암호화 시스템을 제안하였다. 영 삽입된(zero-padded) 원 영상에 무작위 위상 영상을 곱하여 푸리에 변환된 데이터 값을 키 데이터와 위상 변조 XOR 연산으로 암호화한다. 이렇게 생성된 암호화 데이터와 키 데이터를 최종적으로 위상 변조하여 위상 암호화 영상과 위상 키 영상을 만든다. 위상 변조된 암호화 영상과 키 영상은 비가시성과 비선형성으로 인해 높은 정보보호의 특성이 있으며 또한, 푸리에 영역의 암호화로 인해 절단에 의한 정보의 손실에도 영상을 복호화 할 수 있다. 복호화 과정은 암호화 영상과 키 영상의 단순곱을 푸리에 변환한 후 영차 성분(zero-order component)을 공간 필터링함으로써 간단히 구현할 수 있으며, 복호화 시스템은 2공구조의 단일 경로의 구조를 바탕으로 하므로 부피가 상대적으로 작을 뿐만 아니라 외부 충격이나 기온 변화와 같은 환경적인 영향을 받지 않고 복호화를 수행할 수 있다. 제안한 암호화 과정과 복호화 시스템의 구현 가능성 및 타당성을 컴퓨터 모의실험을 통해 확인하였다.
본 논문에서는 최근 발표된 멱승방법인 나눗셈 체인을 적용한 새로운 모듈로 멱승기의 하드웨어 구조를 제안하였다. 나눗셈 체인은 제수(divisor) d=2 또는 $d=2^I +1$ 과 그에 따른 나머지(remainder) r을 이용하여 지수 I를 새롭게 변형하는 방법으로 전체 멱승 연산이 평균 약 1.4$log_2$E 번의 곱셈으로 가능한 알고리즘이다. 이것은 Binary Method가 하드웨어 구현 시 항상 worst case인 $2log_2$E의 계산량이 필요한 것과 비교할 때 상당한 성능개선을 의미한다. 전체 구조는 파이프라인 동작이 가능한 선형 시스톨릭 어레이 구조로 설계하였으며, DG(Dependence Graph)를 수평으로 매핑하여 k비트의 키 사이즈에 대해 두 개의 k 비트 프레임이 k/2+3 개의 PE(Processing Element)로 구성된 두 개의 곱셈기 모듈을 통해 병렬로 동시에 처리되어 100% 처리율을 이루게 하였다. 또한, 규칙적인 데이터 패스를 가질 수 있도록 나눗셈체인을 새롭게 코딩하는 방법을 제안하였다. ASIC 구현을 위해 삼성 0.5um CMOS 스탠다드 셀 라이브러리를 이용해 합성한 결과 최장 지연 패스는 4.24ns로 200MHz의 클럭이 가능하며, 1024비트 데이터 프레임에 대해 약 140kbps의 처리속도를 나타낸다. 복호화 시에는 CRT(Chinese Remainder Theorem)를 적용하여 처리속도를 560kbps로 향상시켰다. 전자서명의 검증과정으로 사용되기도 하는 암호화 과정을 수행할 때 공개키 E는 3,17 혹은 $2^{16} +1$의 사용이 권장된다는 점을 이용하여 E를 17 비트로 제한할 경우 7.3Mbps의 빠른 처리속도를 가질 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.