A Study on Computational Efficiency Enhancement by Using Full Gray Code Genetic Algorithm

전 영역 그레이코드 유전자 알고리듬의 효율성 증대에 관한 연구

  • 이원창 (창원대학교 기계공학과 대학원) ;
  • 성활경 (창원대학교 기계공학과)
  • Published : 2003.10.01

Abstract

Genetic algorithm (GA), which has a powerful searching ability and is comparatively easy to use and also to apply, is in the spotlight in the field of the optimization for mechanical systems these days. However, it also contains some problems of slow convergence and low efficiency caused by a huge amount of repetitive computation. To improve the processing efficiency of repetitive computation, some papers have proposed paralleled GA these days. There are some cases that mention the use of gray code or suggest using gray code partially in GA to raise its slow convergence. Gray code is an encoding of numbers so that adjacent numbers have a single digit differing by 1. A binary gray code with n digits corresponds to a hamiltonian path on an n-dimensional hypercube (including direction reversals). The term gray code is open used to refer to a reflected code, or more specifically still, the binary reflected gray code. However, according to proposed reports, gray code GA has lower convergence about 10-20% comparing with binary code GA without presenting any results. This study proposes new Full gray code GA (FGGA) applying a gray code throughout all basic operation fields of GA, which has a good data processing ability to improve the slow convergence of binary code GA.

Keywords

References

  1. Haug, E. J., Choi, K. K. and Komkov, V., 'Design Sensitivity Analysis of Structural Systems,' Academic press inc., pp. 25-49, 1986
  2. Goldberg, D. E., 'Genetic Algorithms in Search Optimization and Machine Learning,' Addison-Wesley Publishing Company Inc., pp. 7-10, 1989
  3. Chong, T. H., Lee, J. S., 'A Design Method of Gear Trains using a Genetic Algorithm,' J. of the KSPE, Vol. 1, No. 1, pp. 62-63, 2000
  4. Lee, W. CH., Ju, J. H. and Seong, H. G., 'A Study for Improvement Effect of Paralleled Genetic Algorithm by using Clustering Computer System,' J. of the KSPE, Vol. 20, No.4, pp. 189-196, 2003
  5. Haupt, R. L., Haupt, S. E., 'Practical Genetic Algorithm,' John Wiley & Sons, pp. 49-65, pp. 88-91, 1998
  6. Haug, E. J., Arora, J. S., 'Applied Optimal Design,' John Wiley & Sons, pp. 14-16, pp. 245-248, 1979
  7. Baek, W. T., Seong, H. G., 'The Optimization of Sizing and Topology Design for Drilling Machine by Genetic Algorithm,' J. of the KSPE, Vol. 14, No. 12, pp. 25-27, 1997
  8. Choi, J. H., Jung, J. O., 'The Theory of Computer Architecture,' Daelim, pp. 126-128, 2000