• Title/Summary/Keyword: Path Control

Search Result 2,416, Processing Time 0.025 seconds

Cooperative Path Planning of Dynamical Multi-Agent Systems Using Differential Flatness Approach

  • Lian, Feng-Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.401-412
    • /
    • 2008
  • This paper discusses a design methodology of cooperative path planning for dynamical multi-agent systems with spatial and temporal constraints. The cooperative behavior of the multi-agent systems is specified in terms of the objective function in an optimization formulation. The path of achieving cooperative tasks is then generated by the optimization formulation constructed based on a differential flatness approach. Three scenarios of multi-agent tasking are proposed at the cooperative task planning framework. Given agent dynamics, both spatial and temporal constraints are considered in the path planning. The path planning algorithm first finds trajectory curves in a lower-dimensional space and then parameterizes the curves by a set of B-spline representations. The coefficients of the B-spline curves are further solved by a sequential quadratic programming solver to achieve the optimization objective and satisfy these constraints. Finally, several illustrative examples of cooperative path/task planning are presented.

A Design of Path Planning Algorithm for Biped Walking Robot in 3-D Obstacle Environment (3차원 장애물에서의 이족보행로봇을 위한 이동경로계획 알고리즘의 설계)

  • Min, Seung-Ki;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.576-580
    • /
    • 1997
  • This paper presents a path planning algorithm for biped walking robot in 3-D workspace. Since the biped walking robot can generate path on some 3-D obstacles that cannot generate path in case of mobile robot, we have to make a new path planning algorithms. A 3-D-to-2-D mapping algorithm is proposed and two kinds of path planning algorithms are also proposed. They make it easier to generate an efficient path for biped walking robot under given environment. Some simulation results are shown to prove the effectiveness of proposed algorithms.

  • PDF

Active noise control of a second-order Volterra system with an acoustic feedback path (음향 피드백 경로를 가진 2차 볼테라 시스템의 능동소음제어)

  • Lee, Jung-Jae;Kim, Kyoung-Jae;Seo, Jae-Bum;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.238-239
    • /
    • 2008
  • In this paper, active noise control (ANC) of a Volterra system with a nonlinear secondary path is proposed in the presence of a linear acoustic feedback, whereby the conventional ANC of a linear system with online acoustic feedback-path modeling is further extended to ANC of a Volterra system with a linear acoustic feedback path. In particular, the proposed ANC system consists of two adaptive Volterra filters (for nonlinear noise control and nonlinear adaptive noise cancellation) and one feedback-path modeling filter. Simulation results show that the proposed approach yields more effective reduction of disturbances arising from the acoustic feedback, in addition to high nonlinear ANC performance.

  • PDF

Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion (ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘)

  • Lee, Dongwoo;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the space launch vehicle (우주발사체 자세제어용 링 레이저 자이로 피에조 구동기 설계)

  • Kim, Eui-Chan;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2010
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The space launch vehicle use require the high accuracy Gyro to control and determine the altitude to deliver the satellite in the space. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

A Study on the Obstacle Avoidance Algorithm and Path Planning of Multiple Mobile Robot (다중이동로봇의 장애물 회피 논리 및 경로계획에 관한 연구)

  • Park, Kyung-Jin;Lee, Ki-Sung;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.633-635
    • /
    • 1999
  • In this paper, we propose a new method of path planning for multiple mobile robot in dynamic environment. To search the optimal path, multiple mobile robot is always generating path with static and dynamic obstacles avoidance from start point to goal point. The purpose of this paper is to design an optimal path for the mobile robot.

  • PDF

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the LEO satellite (위성 자세제어 자이로 센서 피에조 구동기 설계)

  • Kim, Eui-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.341-343
    • /
    • 2009
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The Low Earth Orbit satellite for observatory use require the high accuracy Gyro to control and determine the altitude because of the need of payload pointing accuracy. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller Is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

  • PDF

Active noise control system using modified on-line secondary path modeling method (향상된 온라인 모델링 방법을 이용한 능동 소음 제어 시스템)

  • 박병욱;최태호;김학윤
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2200-2203
    • /
    • 2003
  • In an active noise control(ANC) system using the Filtered-X least mean square(LMS) algorithm, the online secondary path modeling method by exploiting a random noise generator is applied. This method is suitable for secondary path modeling. However, it is increased the residual error of the ANC system. In this paper, we presents an ANC system improved online secondary path modeling method which is modified Kuo and Zhang model that is the secondary path estimation by the additive noise. In addition, our proposed model is used that additive noise is transformed into the signal multiplied reference signal by gain control parameter and delayed.

  • PDF

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the LEO satellite (저궤도 위성 자세제어를 위한 자이로의 광경로 제어기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.256-260
    • /
    • 2008
  • The Ring Laser Gyro makes use of the Sagnac effect within a resonant ring cavity of A He-Ne laser and has more accuracy than the other Gyros. The Low Earth Orbit satellite for observatory use require the high accuracy Gyro to control and determine the altitude because of the need of payload pointing accuracy. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, Integrator, Phase shifter, High Voltage Amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the LEO satellite (저궤도 위성 자세제어 센서 RLG 피에조 구동기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1584-1588
    • /
    • 2008
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The Low Earth Orbit satellite for observatory use require the high accuracy Gyro to control and determine the altitude because of the need of payload pointing accuracy. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.