• Title/Summary/Keyword: Pasteurization

Search Result 208, Processing Time 0.031 seconds

Studies on the Bulk Pasteurization System for Composting and Spawn Running of the Cultivated Mushroom, Agaricus bisporus (Lange) Sing (양송이 합성배지(合成培地) 제조(製造) 및 균배양(菌培養)을 위한 Bulk Pasteurization System에 관한 연구(硏究))

  • Shin, Gwan Chull
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.269-274
    • /
    • 1982
  • These studies were conducted to evaluate the bulk pasteurization system in comparison with the conventional mushroom growing technique of and to establish the phase II fermentation method for the system. The results obtained were as follows. 1. From the mushroom compost peak-heated in the bulk pasteurization system higher mushroom yield was obtained than that of the conventional method. 2. The compost fermented in the bulk pasteurization system showed poor mycelial growth and low crop. It was caused by the imperfect blower and its operation, not by ununiform moisture content of the compost and ununiform filling. 3. A bulk pasteurization system which modified the mushroom house was not proper for the fermentation of the mushroom compost and the sporophore yields were lower than the standard pasteurization system. 4. In the bulk pasteurization system, peak-heating time, phase II period and quality of the compost were influenced by the air temperature but its effects were not more significant than those of the conventional method. 5. During phase II in the bulk pasteurization system moisture content of the compost at filling did not affect the fermentation of the compost.

  • PDF

Pasteurization of dairy products (우유와 유제품의 살균기술)

  • Choi, Hyosu;Oh, Namsu
    • Food Science and Industry
    • /
    • v.53 no.3
    • /
    • pp.256-263
    • /
    • 2020
  • Milk pasteurization is used to destroy harmful bacteria present in the raw milk for improvement of the keeping quality of dairy products. It is generally carried out in dairy industries as the heating process of raw milk in properly designed and operated equipment to a specific temperature for a specified a specified period. However, thermal processing may cause quality changes in milk as well as significant nutritional losses. Hence, many researchers have started work to design alternative strategies to produce safer foods with minimal thermal treatments for pasteurization. Therefore, the present paper shows the current status of commercial pasteurization system of dairy products in korean industry and the research efforts carried out by researchers on novel milk pasteurization system that could be an alternative to traditional thermal processes for maintaining the freshness of dairy products.

Development of a HVHC-PEF Power Supply for Low Temperature Pasteurization (저온 살균용 펄스형 고압 대전류 전원장치 개발)

  • ;;;;;E.P. Pavlov
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.266-268
    • /
    • 1997
  • High Voltage High Current Pulsed Electric Fields (HVHC-PEF) is a promising technology for the non-thermal pasteurization of foods and a sound complement or replacement to traditional thermal pasteurization, which inactivates bacteria and other microorganisms harmful to humans, but also degrades color, flavor, texture and nutrients. Foods can be pasteurized with pulsed electric fields at ambient or refrigerated temperatures for a short treatment time of seconds or less and the fresh-like quality of food is preserved. Although successful is laboratory tests, applying HVHC-PEF to food pasteurization on a large scale presents many unresolved engineering problems. In this paper the design considerations for 25kV 1kA class HVHC-PEF pasteurization equipment are anlyzed and experimental results are discussed.

  • PDF

Scientific Consideration in Determining Shelf Life of Market Milk (시유의 유통기간 결정에 관한 학문적 고찰)

  • Choi, Suk-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.27-35
    • /
    • 2004
  • The shelf lift of market milk should be determined based on the flavor which is influenced by environmental and sanitary conditions of dairy farm, milk processing plant, and storage and transportation facility as well as compositional quality, such as protein and fat, of the milk itself. The legal shelf life of market milk is often limited by microbiological quality, e.g. total bacterial count, coliform count, and food poisoning bacteria. The bacteria involved with milk spoilage and poisoning are originated from bacteria contaminating milk after pasteurization or spores surviving the heat treatment of pasteurization. The important factors which influence the shelf life of market milk are microbiological quality of raw milk, pasteurization condition, post-pasteurization contamination, and temperature during storage and transportation. The organoleptic quality and shelf life of market milk should be further improved by satisfying the consumer's taste, which depends on somatic cell count and bacterial count of milk, feed quality, foreign substance in milk, and physical treatment during processing and transportation.

  • PDF

The study of Low Temperature Pasteurization System using High Voltage High Current Pulse Electric Field (고압 대전류 펄스 전계를 이용한 저온 살균장치 시스템 연구)

  • ;;;;Pavlov
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.162-165
    • /
    • 1998
  • The non-thermal pasteurization of foods using High Voltage High Current Pulsed Electric Fields (HVHC-PEF) is a promising technology and a sound complement or replacement to traditional thermal pasteurization. The conventional thermal method also inactivates bacteria and other microorganisms harmful to humans, but degrades natural color, flavor, texture and nutrients. At this point, a nonthermal pasteurization technique, HVPEF is thought to be a new processing technique which is able to produce a good quality foods nutritional as well as sensuous. In this paper, the system for HVHC-PEF pasteurization is presented. It use square wave pulse instead of exponential ones. So, power rating of system is reduced considerably. Design considerations for 20kV 500A class equipment are analyzed and experimental results are discussed.

  • PDF

Preservation of Takju by Pasteurization (저온살균법에 의한 탁주의 보존성 증진)

  • 배상면;김헌진;고영희;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.322-325
    • /
    • 1990
  • During transportation and preservation of Takju, alcohol fermentation has continued to produce $C0_2$ from residual sugar and frequently spoiled owing to bacterial contaminants wich produce organic acids. The authors could preserve Takju for more than 50 days at room temperature by pasteurization without any changes of quality. For the optimal condition of pasteurization, fresh Takju was heated at various temperatures and times. D-Value of the Saccharomyces sp. which isolated from Takju collected at seoul area was 19 see at $55^{\circ}C$. Non-spore forming bacterial contaminants, most of which known to cause acid-spoilage, were decreased when heated at $55^{\circ}C$ for 5 min. The optimal pasteurization condition of Takju was at $55^{\circ}C$ for 10 min. Spore forming bacterial contaminants, considered to be EuciiLw sp., were not sterilized after pasteurized at the optimal condition. However, the spore-forming bacteria could not increase any more and also not cause increment of acidity during preservation even at room temperature for 50 days. Reducing sugar was increased during storage of Takju after pasteurization. This suggests that the residual glucoamylase in Takju is still active after pasteurizsation and keep sweet taste.

  • PDF

Empirical Modeling of Fouling Rate of Milk Pasteurization Process : A case study

  • Budiati, Titik;Wahyono, Nanang Dwi;Hefni, Muh.
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • Fouling in heat exchanger becomes a major problem of dairy industry and it increases the production cost. These are lost productivity, additional energy, additional equipment, chemical, manpower, and environmental impact. Fouling also introduces the risk of food safety due to the improper heating temperature which allow the survival of pathogenic bacteria in milk, introducing biofilm formation of pathogenic bacteria in equipments and spreading the pathogenic bacteria to milk. The aim of this study is to determine the fouling rate during pasteurization process in heat exchanger of pasteurized milk produced by Village Cooperative Society (KUD) "X" in Malang, East Java Indonesia by using empirical modeling. The fouling rate is found as $0.3945^{\circ}C/h$ with the heating process time ranged from 0 to 2 hours and temperature difference (hot water inlet temperature and milk outlet temperature) ranged from 0.654 to $1.636^{\circ}C$. The fouling rate depends on type and characteristics of heat exchangers, time and temperature of process, milk type, age of milk, seasonal variations, the presence of microorganism and more. This results will be used to plan Cleaning In Place (CIP) and to design the control system of pasteurization process in order to maintain the milk outlet temperature as standard of pasteurization.

Impact of Thermal and Nonthermal Technologies in Milk Processing (우유의 가열 및 비가열 살균 기술에 관한 연구 동향)

  • Park, Jung Geun;Lee, Yeo Jin;Yoon, Joon Yong;Om, Ae Son
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • Milk is a food with high nutritional value as it contains abundant water, proteins, vitamins, lactose, fat, minerals, enzymes, etc. However, in order to make milk suitable for intake, it should be thermally treated to eliminate microbiologically hazardous factors. Heat treatment is an essential sanitation process for milk, but various precautions must be taken in order to process and preserve it. Therefore, various techniques should be developed to minimize the nutrient loss and to ensure that milk is safe for consumption, conservation, and distribution. However, the existing thermal pasteurization methods are harmful and increase the nutrient loss; moreover, no new thermal pasteurization methods are being researched that are safe for the human health and minimize the nutrient loss. Hence, this study aims to review new processes for thermal (low temperatures) and no thermal pasteurization methods that can minimize the nutrient loss during milk pasteurization.

  • PDF

Development of a HVHC-PEF Power Supply for Low Temperature Pasteurization (저온 살균용 펄스형 고압 대전류 전원장치 개발)

  • Yoo, D.W.;Kim, H.S.;Baek, J.W.;Ryoo, H.J.;Rim, G.H.;Pavlov, E.P.;Park, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2162-2164
    • /
    • 1997
  • High Voltage High Current Pulsed Electric Fields (HVHC-PEF) is a promising technology for the non-thermal pasteurization of foods and a sound complement or replacement to traditional thermal pasteurization, which inactivates bacteria and other microorganisms harmful to humans, but also degrades color, flavor, texture and nutrients. Foods can be pasteurized with pulsed electric fields at ambient or refrigerated temperatures for a short treatment time of seconds or less and the fresh-like quality of food is preserved. Although successful in laboratory tests, applying HVHC-PEF to food pasteurization on a large scale presents many unresolved engineering problems. In this paper the design considerations for 25kV 1kA class HVHC-PEF pasteurization equipment are analyzed and experimental results are discussed.

  • PDF

Use of Atmospheric Pressure Cold Plasma for Meat Industry

  • Lee, Juri;Lee, Cheol Woo;Yong, Hae In;Lee, Hyun Jung;Jo, Cheorun;Jung, Samooel
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.477-485
    • /
    • 2017
  • Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces the number of pathogenic microorganisms in meat and meat products. Furthermore, APCP treatment can be used to generate nitrite, which is an essential component of the curing process. Here, we introduce the effectiveness of APCP treatment as a pasteurization method and/or curing process for use in the meat and meat product processing industry.