Impact of Thermal and Nonthermal Technologies in Milk Processing

우유의 가열 및 비가열 살균 기술에 관한 연구 동향

  • Park, Jung Geun (Dept. of Food & Nutrition, College of Human Ecology, Hanyang University) ;
  • Lee, Yeo Jin (Dept. of Food & Nutrition, College of Human Ecology, Hanyang University) ;
  • Yoon, Joon Yong (Dept. of Mechanical Engineering, Hanyang University) ;
  • Om, Ae Son (Dept. of Food & Nutrition, College of Human Ecology, Hanyang University)
  • 박중근 (한양대학교 생활과학대학 식품영양전공) ;
  • 이여진 (한양대학교 생활과학대학 식품영양전공) ;
  • 윤준용 (한양대학교 공학대학 기계공학전공) ;
  • 엄애선 (한양대학교 생활과학대학 식품영양전공)
  • Received : 2015.09.16
  • Accepted : 2015.09.25
  • Published : 2015.09.30

Abstract

Milk is a food with high nutritional value as it contains abundant water, proteins, vitamins, lactose, fat, minerals, enzymes, etc. However, in order to make milk suitable for intake, it should be thermally treated to eliminate microbiologically hazardous factors. Heat treatment is an essential sanitation process for milk, but various precautions must be taken in order to process and preserve it. Therefore, various techniques should be developed to minimize the nutrient loss and to ensure that milk is safe for consumption, conservation, and distribution. However, the existing thermal pasteurization methods are harmful and increase the nutrient loss; moreover, no new thermal pasteurization methods are being researched that are safe for the human health and minimize the nutrient loss. Hence, this study aims to review new processes for thermal (low temperatures) and no thermal pasteurization methods that can minimize the nutrient loss during milk pasteurization.

Keywords

References

  1. Chemat, F., Huma, Z. and Khan, M. K. 2011. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry 18:813-835. https://doi.org/10.1016/j.ultsonch.2010.11.023
  2. Codex Alimentarius. 2003. Report of the thirty-fourth session of the Codex Committee on Food Hygiene, Orlando, FL. Appendix III. Proposed draft of Code of Hygienic Practice for Milk and Milk Products.
  3. Franc, J. P. and Michel, J. M. 2003. Fundamentals of cavitation, Kluwer Academic Publishers, London.
  4. Gogate, P. R., Tayal, R. K. and Pandit, A. B. 2006. Cavitation: A technology on the horizon. Current Science 91:35-46.
  5. Guerrero-Beltran, J. A., Sepulveda, D. R., Gongora-Nieto, M. M., Barry, S., Barbosa-Canovas, G. V. 2010. Milk thermization by pulsed electric fields (PEF) and electrically induced heat. Journal of Food Engineering 100:56-60. https://doi.org/10.1016/j.jfoodeng.2010.03.027
  6. He, H., Adams, R. M., Farkas, D. F. and Morrissey, M. T. 2006, Use of high-pressure processing for oyster shucking and shelf-life extension. J. Food Sci. 67:640-645.
  7. Hite, B. H. 1899. The effects of pressure in the preservation of milk. West Virginia Agric. Exp. Sta. Bull. 58:15-35.
  8. In, Y. M. and Jung, I. K. 2001. A review on the change of physicochemical quality during heating of milk. J. Korean Dairy Technol. Sci. 19:13-21.
  9. Isolauri, E. and Turjanmaa, K. 1996. Combined skin prick and patch tsting enhances identification of food allergy in infants with atopic dermatitis. J. Allergy Clin. Immunol. 97:9-15. https://doi.org/10.1016/S0091-6749(96)70277-4
  10. Jeong, S. G., In, Y. M., Park, B. Y., Yoo, Y. M., Kim, J. H., Cho, S. H., Lee, J. M. and Kim, Y. K. 1999. Studies on the effects of ultrasonication treatment on the physicochemical quality of raw milk. Korean J. Food Sci. Ani. Resour. 19:346-351.
  11. Jung, S. C., Kim, K. H., Chung, M. E., Kim, S. I., Byun, S. K., Lee, D. S., Jeong, S. K., Park, S. W., Jun, K. S., Jun, K. S., Lee, K. H., Cho, N. I., Lee, H. G. and Kim, O. K. 2001. A study on the quality changes of the LTLT and HTST treated milk by storage conditions. Kor. J. Vet. Publ. Hlth. 25:221-227.
  12. Kang, S. H. and Shin, Y. K. 2014. Recent research on and development of thermal and pulsed electric field systems for pasteurization of milk and milk products. Korean J. Dairy Sci. Technol. 32:31-36.
  13. Kim, K. S., Park, D. J., Yu, H., Yoon, Y. C. and Kim, Y. K. 1990. Changes of city milk components by the heat treatment. Korean J. Dairy Sci. 12:190-195.
  14. Kwon, S. H., Ahn, J. J. and Kwak, H. S. 1998. Quality changes in various heat-treated market milks during storage. Korean Dairy Techno. 16:90-97.
  15. Kwon, W. C. and Yoon, J. Y. 2013. Experimental study of a cavitation heat generator. Proc. IMechE Part E: J. Process Mechanical Engineering 227:67-73. https://doi.org/10.1177/0954408912451535
  16. Lee, C. J. and Joung, H. J. 2012. Milk intake is associated with metabolic syndrome - Using data from the Korea national health and nutrition examination survey. Korean J. Community Nutr. 17:795-804. https://doi.org/10.5720/kjcn.2012.17.6.795
  17. Lee, H. H., Kim, G. and Park, Y. S. 2013. Changes of proteins and physicochemical properties of cow's milk by high voltage pulsed electric field treatment. Food Eng. Prog. 17:251-258. https://doi.org/10.13050/foodengprog.2013.17.3.251
  18. Lee, J. E., Choi, E. J., Park, S. Y., Jeon, G. Y., Jang, J. Y., Oh, Y. J., Lim, S. K., Kim, T. W., Lee, J. H., Park, H. W., Kim, H. J., Jeon, J. T. and Choi, H. J. 2014. Effects of high pressure treatment on the microbiological and chemical properties of milk. Korean J. Microbiol. Biotechnol. 42:267-274. https://doi.org/10.4014/kjmb.1405.05007
  19. Lee, Y. L., Kim, H. S. and Baek, M. H. 2013. Research on ultrasonic sterilization effect of treatment equipments. KSMTE. 22:818-823.
  20. Lee, K. H. 1996. Lactulose content and availability of calcium and ascorbic acid of the commercial milk products in Korean market. J. Nutrition and Health 29:1042-1048.
  21. Lyster, R. L. J. 1970. The denaturation of ${\alpha}$-lactalbumin and ${\beta}$-globulin in heated milk. J. Dairy Res. 37:233-243. https://doi.org/10.1017/S0022029900013297
  22. Milly, P. J., Toledo, R. T., Kerr, W. L. and Armstead, D. 2008. Hydrodynamic cavitation: Characterization of a novel design with energy considerations for the inactivation of Saccharomyces cerevisiae in apple juice. Journal of Food Science 73:M298M303. https://doi.org/10.1111/j.1750-3841.2008.00827.x
  23. Nema, P. K. and Datta, A. K. 2006. Comparative study of heat induced fouling of various types of milk flowing over a heated metal surface. Int J. Food Eng. 2: Iss. 3, Article 9.
  24. Park, J. Y., Na, S. Y. and Lee, Y. J. 2010. Present and future of non-thermal food processing technology. Korean J. Food Sci. Technol. Food Science and Industry. 43:2-20.
  25. Park, Y. H. and Hong, Y. H. 1989. HMF (5-Hydroxymethylfurfural) content in domesticmarket milks. Korean J. Dairy Sci. 11:265-272.
  26. Pereira, P. C. 2014. Milk nutritional composition and its role in human health. Nutrition 30:619-627. https://doi.org/10.1016/j.nut.2013.10.011
  27. Porter, J. W. G. and Thompson, S. Y. 1969. The effect of heat treatment on the nutritive quality of liquid milk, with particular reference to UHT processes. Dochema-Monogr 63:233-241.
  28. Prescott, L. M., Harley, J. P. and Klein, D. A. 2005. Microbiology, pp. 122-125, 6th Edition, Chap 6. The growth of microorganisms, Lifescience.
  29. Rekha Chawla, Girdhari Ramdass Patil and Ashish Kumar Singh. 2011. High hydrostatic pressure technology in dairy processing: a review. J. Food Sci. Technol. 48:260-268. https://doi.org/10.1007/s13197-010-0180-4
  30. Scott, J. K., Bishop, D. R., Zechalko, A. and Edwards Webb, J. D. 1984. Nutrition content of liquid milk, I. Vitamin A, D, C and of the B-complex in pasteurized bulk liquid milk. J. Dairy Res. 51:37-50. https://doi.org/10.1017/S002202990002330X
  31. Shin, J. K., Jung, K. J., Pyun, Y. R. and Chung, M. S. 2007. Application of pulsed electric fields with square wave pulse to milk inoculated with E. coli, P. fluorescens, and B. stearothermophilus. Food Sci. Biotechnol. 16:1082-1084.
  32. Trujillo, A. J., Capellas, M., Saldo, J., Gervilla, R. and Guamis, B. 2002. Applications of high-hydrostatic pressure on milk and dairy products: a review, Innov. Food Sci. Emerg. 3:295-307. https://doi.org/10.1016/S1466-8564(02)00049-8
  33. Vachon, J. F., Kheadr, E. E., Giasson, J., Paquin, P. and Fliss, I. 2002. Inactivation of food-borne pathogens in milk using dynamic high pressure. J. Food Prot. 65:345-352. https://doi.org/10.4315/0362-028X-65.2.345
  34. Vogel, A., Busch, S. and Parlitz, U. 1996. Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100:148-165. https://doi.org/10.1121/1.415878
  35. Won, Y. C. 2015. Effects of pulsed electric fields on accelerated drying of red pepper. Master dissertation, Chung-Ang University, Korea.
  36. Young, F. R. 1999. "Cavitation," London, U.K., Imperial College Press, pp. 418.
  37. Zhang, Q., Barbosa-Canovas, G. and Swanson, B. G. 1995a. Inactivation of E. coli for food pasteurization by high intensity short duration pulsed electric fields. J. Food Proc. Preserv. 19:103-118. https://doi.org/10.1111/j.1745-4549.1995.tb00281.x
  38. Zhang, Q., Barbosa-Canovas, G. and Swanson, B. G. 1995b. Engineering aspects of pulsed electric field pasteurization. J. Food Eng. 25:268-281.
  39. 박승용. 2003. 우유생산과 가공, 유한문화사, 서울, pp. 171.
  40. 식품의약품안전처고시 제2014-120호. 원유의 위생등급기준, 2014. 05. 30.
  41. 엄애선, 우혜임, 이여진. 2014. 학술논문 7: 군대급식에서 우유의 영양보충효과에 대한 고찰. 군사논단 79:241-265.
  42. 이순자. 1991. 열처리한 우유중 성분변화에 관한 연구. 서강정보대학교 논문집. 10:311-320.