• Title/Summary/Keyword: Pasternak's foundations

Search Result 60, Processing Time 0.031 seconds

On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak foundations via finite element computation

  • Zakaria Belabed;Abdelouahed Tounsi;Mohammed A. Al-Osta;Abdeldjebbar Tounsi;Hoang-Le Minh
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.183-204
    • /
    • 2024
  • In current investigation, a novel beam finite element model is formulated to analyze the buckling and free vibration responses of functionally graded porous beams resting on Winkler-Pasternak elastic foundations. The novelty lies in the formulation of a simplified finite element model with only three degrees of freedom per node, integrating both C0 and C1 continuity requirements according to Lagrange and Hermite interpolations, respectively, in isoparametric coordinate while emphasizing the impact of z-coordinate-dependent porosity on vibration and buckling responses. The proposed model has been validated and demonstrating high accuracy when compared to previously published solutions. A detailed parametric examination is performed, highlighting the influence of porosity distribution, foundation parameters, slenderness ratio, and boundary conditions. Unlike existing numerical techniques, the proposed element achieves a high rate of convergence with reduced computational complexity. Additionally, the model's adaptability to various mechanical problems and structural geometries is showcased through the numerical evaluation of elastic foundations, with results in strong agreement with the theoretical formulation. In light of the findings, porosity significantly affects the mechanical integrity of FGP beams on elastic foundations, with the advanced beam element offering a stable, efficient model for future research and this in-depth investigation enriches porous structure simulations in a field with limited current research, necessitating additional exploration and investigation.

Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions

  • Mimoun Bennedjadi;Salem Mohammed Aldosari;Abdelbaki Chikh;Abdelhakim Kaci;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdeldjebbar Tounsi;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.159-177
    • /
    • 2023
  • In the present work, a simple and refined shear deformation theory is used to analyze the effect of visco-elastic foundation on the buckling response of exponentially-gradient sandwich plates under various boundary conditions. The proposed theory includes indeterminate integral variables kinematic with only four generalized parameters, in which no shear correction factor is used. The visco-Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The four governing equations for FGM sandwich plates are derived by employing principle of virtual work. To solve the buckling problem, Galerkin's approach is utilized for FGM sandwich plates for various boundary conditions. The analytical solutions for critical buckling loads of several types of powerly graded sandwich plates resting on visco-Pasternak foundations under various boundary conditions are presented. Some numerical results are presented to indicate the effects of inhomogeneity parameter, elastic foundation type, and damping coefficient of the foundation, on the critical buckling loads.

Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is developed to study the effect of the distribution shape of porosity on static behavior of FG plates. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal and shear stress. It can be concluded that the proposed theory is simple and precise for the resolution of the behavior of flexural FGM plates resting on elastic foundations while taking into account the shape of distribution of the porosity.

Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation

  • Chami, Khaldoune;Messafer, Tahar;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.91-101
    • /
    • 2020
  • This work presents an efficient and original hyperbolic shear deformation theory for the bending and dynamic behavior of functionally graded (FG) beams resting on Winkler - Pasternak foundations. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present theory, the equations of motion are derived from Hamilton's principle. Navier type analytical solutions are obtained for the bending and vibration problems. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and vibration behavior of functionally graded beams.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Fouad Bourada;Abdelhakim Bouhadra
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.307-323
    • /
    • 2023
  • In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.

Analysis of the hygro-thermo-mechanical response of functionally graded plates resting on elastic foundations based on various micromechanical models

  • Belkacem Adim;Tahar Hassaine Daouadji
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.409-420
    • /
    • 2024
  • In this research the hygro-thermo-mechanical loading and micromechanical model effects on bending behavior of functionally graded material plates resting on Winkler and Pasternak elastic foundations, the higher order shear deformation theory is used here. The material properties of the plate: young's modulus, thermal coefficient and moisture expansion coefficient are assumed to be graded in the thickness direction according to various micromechanical models starting with the Voigt's model which is commonly used in most functionally graded plates studies to the Reuss's, LRVE's and Mori-Tanaka's models. The principle of virtual displacement is used to determine the equilibrium equations and the a several numerical results are given to validate the precision of the present method for bending behavior of FGM plates subjected to hygro-thermo-mechanical loading resting on elastic foundations. Afterwards, a parametric study is conducted to determine the effect of different parameters on the deflection of the FGM plates like micromechanical models, type of loading and plate geometry. In the lights of the present research, it can be concluded that the present theory is accurate and simple in predicting the deflection behavior of functionally graded plates under hygro-thermo-mechanical effects and micromechanical models.

A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation

  • Abazid, Mohammad Alakel;Alotebi, Muneerah S.;Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.219-232
    • /
    • 2018
  • This paper deals with the static bending of various types of FGM sandwich plates resting on two-parameter elastic foundations in hygrothermal environment. The elastic foundation is modeled as Pasternak's type, which can be either isotropic or orthotropic and as a special case, it converges to Winkler's foundation if the shear layer is neglected. The present FGM sandwich plate is assumed to be made of a fully ceramic core layer sandwiched by metal/ceramic FGM coats. The governing equations are derived from principle of virtual displacements based on a shear and normal deformations plate theory. The present theory takes into account both shear and normal strains effects, thus it predicts results more accurate than the shear deformation plate theories. The results obtained by the shear and normal deformation theory are compared with those available in the literature and also with those obtained by other shear deformation theories. It is concluded that the present results are slightly deviated from other results because the normal deformation effect is taken into account. Numerical results are presented to show the effects of the different parameters, such as side-to-thickness ratio, foundation parameters, aspect ratio, temperature, moisture, power law index and core thickness on the stresses and displacements of the FG sandwich plates.

Waves dispersion in an imperfect functionally graded beam resting on visco-Pasternak foundation

  • Saeed I. Tahir;Abdelbaki Chikh;Ismail M. Mudhaffar;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.271-277
    • /
    • 2023
  • This article investigates the effect of viscoelastic foundations on the waves' dispersion in a beam made of ceramic-metal functionally graded material (FGM) with microstructural defects. The beam is considered to be shear deformable, and a simple three-unknown sinusoidal integral higher-order shear deformation beam theory is applied to represent the beam's displacement field. Novel to this study is the investigation of the impact of viscosity damping on imperfect FG beams, utilizing a few-unknowns theory. The stresses and strains are obtained using the two-dimensional elasticity relations of FGM, neglecting the normal strain in the beam's depth direction. The variational operation is employed to define the dispersion relations of the FGM beam. The influences of the material gradation exponent, the beam's thickness, the porosity, and visco-Pasternak foundation parameters are represented. Results showed that phase velocity was inversely proportional to the damping and porosity of the beams. Additionally, the foundation viscous damping had a stronger influence on wave velocity when porosity volume fractions were low.

Lowest Symmetrical and Antisymmetrical Natural Frequency Equations of Shallow Arches on Elastic Foundations (탄성지반 위에 놓인 낮은 아치의 최저차 대칭 및 역대칭 고유진동수 방정식(구조 및 재료 \circled1))

  • 이병구;박광규;오상진;서종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.213-218
    • /
    • 2000
  • This paper deals with the free vibrations of shallow arches resting on elastic foundations. Foundations are assumed to follow the hypothesis proposed by Pasternak. The governing differential equation is derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. Sinusoidal arches with hinged-hinged and clamped-clamped end constraints are considered in analysis. The frequency equations (lowest symmetical and antisymmetrical natural frequency equations) are obtained by Galerkin's method. The effects of arch rise, Winkler foundation parameter and shear foundation parameter on the lowest two natural frequencies are investigated.

  • PDF